SI	PECIFICA	TION
LIQUID	CRYSTAL DISP	LAY MODULE
Model No	UMNH-724	4JN-1F
CUSTOMER :		
		TENTATIVE
	APPROVED SIGN	NATURE
VERS	ION NO.0	
		SAMPLE 0
	NITED RADIANT	TECHNOLOGY CORP.
APPROVED BY:		DATE:
LCM FACTORY: No12,C TEL:88 SALES OFFICE: 2F,No.1 TEL:88	hien Kuo Road, Taichung Export Proces 5-4-25314277 FAX:88 9,Lane 768,Pa Teh Road Sec.4,Taipei ,T 5-2-27850792 FAX:88	ssing Zone ,Tantzu,Taichung,Taiwan,R.O.C 36-4-25340575 Yaiwan,R.O.C 36-2-27850797

CONTENTS:

Item No	Item	Page
1	Basic Specification	
	1.1 Mechanical Specification	1
	1.2 Display Specification	1
	1.3 Outline Dimension	2
	1.4 Block Diagram	3
	1.5 Interface Pin Connection	4
2	Electrical Characteristics	
	2.1 Absolute Maximum Ratings	5
	2.2 DC Characteristics	6
	2.3 AC Characteristics	7
	2.4 Reset Timing	10
3	Electrical -Optical Characteristics	
	3.1 Condition	11
	3.2 Characteristics	12
4	Control and Display Command	
	4.1 Reset Function	13
	4.2 Instruction Table	14
	4.3 CGRAM Address Map	15
	4.4 Graphics Operation Function	30
	4.5 Contras Adjuster Function	38
	4.6 Four-Grayscale Display Function	40
	4.7 Window Cursor Display Function	41
	4.8 Vertical Smooth Scroll Function	43
	4.9 Partial Smooth Scroll Display Function	45
	4.10 Double-height Display Function	49
	4.11 Reversed Display Function	50
	4.12 Partial-display-on Function	51
	4.13 Sleep and Standby Function	53
5	Reliability	
	5.1 Environmental Test	54
6	Handing Precautions	55

Revision record

Module number	Rev mark		Revision description	Rev by	Rev date	Sample No.
UMNH-7244JN-F	0	1.	Without LCD SPEC.	廖志豪 USNH-E533JY-F	Oct/4/01'	0
UMNH-7244JN-1F	0	1. 2.	Without LCD SPEC. Changed the Vop of LCD from 13.0V to 15.5 V.	廖志豪 USNH-E533JY-1F	Oct/4/01'	0

1. Basic Specifications

Items	Nominal Dimension	Unit
Dot Matrix	128 ×128 dots	-
Module Size (W × H × T)	36.9 × 56.65 × 1.24	mm.
Viewing Area (W × H)	30.5 × 32.0	mm.
Active Area (W × H)	27.25 × 29.81	mm.
Dot Size (W × H)	0.199 × 0.219	dots
Dot Pitch (W × H)	0.213 × 0.233	mm.
Driving Method	1/128	Duty
	1/11	Bias
Driving IC Assembly	TAB	-

1-1 Mechanical specifications:

* Exporse the driver IC under blaze (luminosity over than 1 cd) when using the LCM may cause IC operating failure.

1-2 Display Specifications:

Display	Descriptions	Note
LCD Type	FSTN	
LCD Mode	Positive	
Polarizer Mode	Transflective	
Polarizer UV - Cutting	With	
Polarizer Surface	Normal	
Background Color	White	
Backlight Type	-	
Backlight Color	-	
Viewing Angle	12 O'clock Direction	

UNITED RADIANT TECHNOLOGY CORP.

Page: 1 Next: 2

1-5 Interface Pin Connection:

Pin No.	Pin Name	I/O	Description
1	IM1	Ι	Selects the MPU interface mode:
2	IM0		
			IM1 IM0 MPU interface mode
			GND GND 68-system 16-bit bus interface
			GND VCC 68-system 8-bit bus interface
			VCC GND 80-system 16-bit bus interface
			VCC VCC 80-system 8-bir bus interface
3	OPOFF	Ι	Turns the internal operational amplifier off when OPOFF=VCC, and
			turns it on when OPOFF=GND. If the amplifier is turned off
			(OPOFF=VCC), V1 to V5 must be supplied to the V1OUT to
			V5OUT pins.
4	TEST	Ι	Test pin. Must be fixed at GND level.
5~20	DB15~DB0	I/O	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data
			transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.
21	RESET	Ι	Reset pin. Initializes the LSI when low. Must be reset
			after power-on.
22	/CS	Ι	Selects the HD66750STB0 :
			Low: HD66750STB0 is selected and can be accessed.
			High: HD66750STB0 is not selected and cannot be accessed.
			Must be fixed at GND level when not in use.
23	RS	Ι	Selects the register.
			Low : Index/status High : Control
24	E/WR	Ι	For a 68-system bus interface, serves as an enable signal to activate
			data read/write operation.
			For an 80-system bus interface, serves as a write strobe signal and
			writes data at the low level.

Pin No.	Pin Name	I/O	Description
25	RW/RD	Ι	For a 68-system bus interface, serves as a signal to select data
			read/write operation.
			Low: Write High: Read
			For an 80-system bus interface, serves as a read strobe signal and
			reads data at the low level.
26	VSS	-	Ground.
27,28	OSC2,OSC	I/O	For R-C oscillation using an external resistor, connect an external
	1		resistor. For external clock supply, input clock pulses to OSC1.
29	VDD	-	Power supply. (+3.0V)
30	VCI	-	Inputs a reference voltage and supplies power to the booster;
			generates the liquid crystal display drive voltage from the operating
			voltage. The boosting output voltage must not be larger than the
			absolute maximum ratings. Must be left disconnected when the
			booster is not used
31,32	C6+ ,C6-	-	External capacitance should be connected here for boosting
33,34	C5+ ,C5-	I	External capacitance should be connected here for boosting
35,36	C4+ ,C4-	-	External capacitance should be connected here for boosting
37,38	C3+ ,C3-	-	External capacitance should be connected here for boosting
39,40	C2+ ,C2-	-	External capacitance should be connected here for boosting
41,42	C1+,C1-	-	External capacitance should be connected here for boosting
43	VLOUT	0	Potential difference between Vci and GND is two- to
			seven-times-boosted and then output. Magnitude of
			boost is selected by instruction
44	VLCD	-	Power supply for LCD drive. VLCD-GND = 17V max.
45~49	V1OUT~	I/O	Used for output from the internal operational amplifiers when they are
	V5OUT		used (OPOFF = GND); attach a capacitor to stabilize the output. When
			the amplifiers are not used (OPOFF = VCC), V1 to V5 voltages can be
			supplied to these pins externally.
50	VTEST		Test pin. Must be left disconnected.

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

(133 - 01)	(vss	=	0V)	
------------	------	---	-------------	--

Items	Symbol	Min.	Max.	Unit
Supply voltage for logics	VDD-VSS	-0.3	+4.6	V
Supply voltage for driving LCD	V _{LOUT} -VSS	-0.3	+16.5	V
Input voltage	V _{IN}	-0.3	VDD+0.3	V
Operating temperature range	T _{OP}	-20	70	
Storage temperature range	T _{ST}	-30	80	

UNITED RADIANT TECHNOLOGY CORP.

Page: 5 Next: 6

2.2 DC Characteristics

Items	Symbol	Min.	Typ.	Max.	Unit	Condition
Supply voltage (Logic)	V _{DD}	-	3.0	-	V	
Supply voltage (LCD)	V_{op}	-	15.5	-	V	*NOTE1
Input high level voltage	V_{IH}	0.7VDD	-	VDD	V	
Input low level voltage	V_{IL}	-0.3	-	0.15VDD	V	
Output high level voltage	V _{OH}	0.75VDD	-	-	V	
Output low level voltage	V_{OL}	-	-	0.15VDD	V	
Power supply current (VDD)	Idd	-	-	2.0	mA	*NOTE2

 $(VDD=3.0\pm0.5V, VSS=0V, T_a=25)$

*NOTE1 : Min. and Max. Voltage is specified as the voltage within the condition of operational temperature range $-20 \sim 70$.

Typ. Voltage is specified as module driving condition: $T_a=25$.

Vop (=V1-GND)

Vop set instruction description

		Code														
	DB1	DB1	DB1	DB1	DB1	DB1	DB									
	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
Contrast control	*	*	*	*	*	*	*	*	*	*	1	0	1	0	0	1

*NOTE2:

U.R.T.

Measuring Condition: Standard Value MAX.

T_a = 25

VDD-VSS = 3.0VVCI-VSS = 3.0V

 V_{1OUT} -VSS = V_{OP} at optimum contrast Duty = 1/128 Duty

Bias = 1/11Bias

Display Pattern = Checkered pattern

 \equiv UNITED RADIANT TECHNOLOGY CORP.

Page: 6 Next: 7

2.3 AC Characteristic

Clock Characteristics

Item	Symbol	Min	Тур	Max	Unit	Test Condition
External clock frequency	fcp	50	75	150	kHz	
External clock duty ratio	Duty	45	50	55	%	
External clock rise time	trcp	-	-	0.2	μs	
External clock fall time	tfcp	-	-	0.2	μs	
R-C oscillation clock	f _{osc}	59	74	89	kHz	Rf = 390 kΩ, V _{cc} = 3 V

External Clock Supply

Ξ

Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized.

Internal Oscillation

External	R-C Oscillation	Frequency: fos	c	
Resistance (Rf)	Vcc = 1.8 V	Vcc = 2.2 V	Vcc = 3.0 V	Vcc = 4.0 V
200 kΩ	86 kHz	111 kHz	130 kHz	140 kHz
270 kΩ	70 kHz	86 kHz	100 kHz	108 kHz
300 kΩ	64 kHz	79 kHz	92 kHz	98 kHz
330 kΩ	60 kHz	74 kHz	86 kHz	91 kHz
360 kΩ	57 kHz	69 kHz	79 kHz	84 kHz
390 kΩ	54 kHz	64 kHz	74 kHz	78 kHz
430 kΩ	49 kHz	59 kHz	67 kHz	71 kHz
470 kΩ	46 kHz	54 kHz	61 kHz	65 kHz

External Resistance Value and R-C Oscillation Frequency (Referential Data)

(VDD=3.0V)

EU.R.T.E

68-system Interface Timing Characteristics

Item		Symbol	Min	Тур	Max	Unit
Enable cycle time	Write	t _{cyce}	380	_	_	ns
	Read	t _{cyce}	500	_	_	
Enable high-level pulse width	Write	PW_{EH}	70	_	_	ns
	Read	PW_{EH}	250	_	_	
Enable low-level pulse width	Write	PW_{EL}	150	_	_	ns
	Read	PW_{EL}	150	_	_	
Enable rise/fall time		$t_{\rm Er},t_{\rm Ef}$	_	_	25	ns
Setup time (RS, R/W to E, CS*)		t_{ASE}	50	_	_	ns
Address hold time		t _{AHE}	20	_	_	ns
Write data setup time		t_{DSWE}	60	_	_	ns
Write data hold time		t _{HE}	20	_	_	ns
Read data delay time		t_{DDRE}	_	_	200	ns
Read data hold time		t _{DHRE}	5	_	_	ns

UNITED RADIANT TECHNOLOGY CORP.

Page: 8 Next: 9

(VDD=3.0V)

80-system Bus Interface Timing Characteristics

Item		Symbol	Min	Тур	Max	Unit
Bus cycle time	Write	t _{cycw}	380	_	_	ns
	Read	t _{cycr}	500	_	_	ns
Write low-level pulse width		PW_{LW}	70	_	_	ns
Read low-level pulse width		PW_{LR}	250	_	_	ns
Write high-level pulse width		PW_{HW}	150	_	_	ns
Read high-level pulse width		PW_{HR}	150	_	_	ns
Write/Read rise/fall time		$t_{_{WBr,WBf}}$	_	_	25	ns
Setup time (RS to CS*, WR*, RD*)		t _{AS}	50	_	_	ns
Address hold time		t _{AH}	20	_	_	ns
Write data setup time		t_{DSW}	60	_	_	ns
Write data hold time		t _H	20	_	_	ns
Read data delay time		t_{DDR}	_	_	200	ns
Read data hold time		t _{DHR}	5	_	_	ns

2-4 Reset Timing:

Item	Symbol	Min	Тур	Max	Unit
Reset low-level width	t _{res}	1			ms

3. Optical Characteristics

3.1 Optical Characteristics

Driving Condition

Item	Voltage	Duty	Bias
Valu	15.5V	1/128	1/11

Electrical/Optical Characteristics

No		Item	Syn	nbol/Temp.	MIN.	TYP.	MAX.	Unit.	Remarks
			20	Vth2	-	-	-		
			-20	Vth1	-	-	-		
1	Vth Val	taga	25	Vth2	I	-	-	V	Note2
1	vui voi	lage	23	Vth1	I	-	-	v	110102
			70	Vth2	-	-	-		
			/0	Vth1	-	-	-		
				-20	I	-	-		
			Tf	25	I	-	-		
	D	т.		70	I	-	-		
2	Respo	nse I ime		-20	I	-	-	ms	Note4
			Tf	25	-	-	-		
				70	-	-	-		
2	Viewing	Front-Rear	Θ1	Ф-27 0	-	-	-	dag	Nota1
3	Angle	Left-Right	Θ2	$\Psi = 2/0$	-	-	-	ueg.	INOLEI
4	Contras	t Ratio	Cr	25	-	-	-	-	Note7

3.2 Definition of Optical Characteristics

Measurement Condition L: LIGHT SOURCE PM: LIGHT RECEIVING PHOTOMULTIPLIER TUBE [Note 4] Definition of Response Time ΡM Non-selected State Selected State Non-selected State 12H Transmittance (%) 90% 90% 9H 3H 61 Т 10% _10% TEMPERATURE CONTROL CHAMBER time Τf Tr İ [Note 1] Definition of Viewing Angle Measurement Condition: Viewing Angle: 2=0°, 1=0° Viewing Direction: =270° 0° 0° 2 2 Viewing Direction Left Riaht [Note 3] Definition of Contrast Ratio (a). Contrast Ratio= Transmittance under Non-selected Waveform Viewing Direction Transmittance under Selected Waveform (b). Measurement Condition: Viewing Angle: $2=0^{\circ}$, $1=10^{\circ}$ [Note 2] Definition of "Vth" Transmittance 100% Non-selected Waveform Selected Waveform 0 (Less Contrast) Vth1 (Practical) Vth2 (Crosstalk) (a). Vth1: =270°, 1=10°, Selected Waveform 50% Transmittance (b). Vth1: =270°, 1=40°, Non-selected Waveform 70% Transmittance .R.T. UNITED RADIANT TECHNOLOGY CORP.

Page: 12 Next:13

4. Control And Display Command 4-1 Reset Function

Reset Function

The HD66750S is internally initialized by RESET input. Because the HD66750S is a busy state during the reset period, no instruction or CGRAM data access from the MPU is accepted. The reset input must be held for at least 1 ms. Do not access the CGRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied (10 ms).

Instruction Set Initialization:

- 1. Start oscillation executed
- 2. Driver output control (CN = 0, NL3–0 = 1111, SGS = 0, CMS = 0)
- 3. B-pattern waveform AC drive (B/C = 0, ECR = 0, NW4-0 = 00000)
- 4. Power control (DC1–0 = 00, AP1–0 = 00: LCD power off, SLP = 0: Sleep mode off, STB = 0: Standby mode off)
- 5. 1/11 bias drive (BS2–0 = 000), Two-times boost (BT1–0 = 00), Weak contrast (CT5–0 = 000000)
- 6. Entry mode set (I/D = 1: Increment by 1, AM1–0 = 00: Horizontal move, LG1–0 = 00: Replace mode)
- 7. Rotation (RT2-0 = 000: No shift)
- 8. Display control (DHE = 0: Double-height display off, REV = 0, GS = 0, D = 0: Display off, PS1–0 = 00: Partial scroll off)
- 9. Cursor control (C = 0: Cursor display off, CM1-0 = 00: White blink cursor)
- 10. Double-height display position (DS6–0 = 0000000, DE6–0 = 0000000)
- 11. Vertical scroll control (SL6–0 = 0000000: First raster-row displayed at the top)
- 12. Window cursor display position (HS6–0 = HE6–0 = VS6–0 = VE6–0 = 0000000)
- 13. RAM write data mask (WM15–0 = 0000H: No mask)
- 14. RAM address set (AD10-0 = 000H)

CGRAM Data Initialization:

This is not automatically initialized by reset input but must be initialized by software while display is off (D = 0).

Output Pin Initialization:

- 1. LCD driver output pins (SEG/COM): Outputs GND level
- 2. Booster output pins (VLOUT): Outputs Vcc level
- 3. Oscillator output pin (OSC2): Outputs oscillation signal

4.2 Inuctstrion Table

	R12	R11		R10	FIOC	BOB	FION	R09	P08		P07	R06		105	Pos			Plog		P02		P01		100	9R	я	ş	Reg
RAM data read	RAM data write	RMM address set	massk	RAM write data	Vertical cursor position	Horizontal cursor position	Vertical scroll	Double-height display position	Cursor control		Distriction Amplitude	Retation		Entry mode	Contrast control			Power control	waveform control	LCD-driving-	control	Driver output	Device code read	Start oscillation	Status read	Index	Register Name	
-	0	0		0	0	0	0	0	0		0	0		0	0			0		0		0		0		0	WV P	
-	-	-		-	-	-	-	-	-		-	-		-	-			-		-		1	-	-	0	0	8	
Π			15	MM	*		-				·	•		•	·							·	0	·	0		0815	
			14	MM	VE6	HE6		DE6			•			•	·								0		5		0814	
Read	Write		đ	MM.	VE5	HES		DE5				•			•								0		5		0813	F
data ()	data ()	•	ŝ	WW	VE4	HE4		DE4							·			BS2					0		2		0812	S 18
(Jaddr	(Jeddr		#	WW	VE3	E3H		DE3				•						BSi					0		5		DB11	8
		AD10	10	MM	Ň2	102		DE2			·			•	·			8						·	5		01810	
		-8 (up		6MM	ě	HI.	·	DE1	·		·	·		•	·			BLi	L			CMS	-	·	Ξ	·	680	
		(100		8MM	ΥĒ	HEO	·	BEO	·		·	·	L	•	ŀ	L		BTO	L	•		808	-	·	5	·	880	L
				WM7		·		·			·	٠	L	•	·	L			L	•		·	0	·	0	·	087	
				MM0	V 36	HS6	816	D86			•	•	L	•	·	L			L	BC		Ŷ	-	·	0	·	086	
Read	Write			WM5	V85	H35	<u>6</u>	D85			P81	•	L	*	CT5	L		DCi	L	EOR			0	·	ŝ	·	DB5	5
data (i	data (I	AD7		WM44	VS4	754	84	D84	·		PS	·		ā	CT4			8	L	NW4		•	-	·	Ç4	2	D84	8
OW-OF)	(18MO	-0 (lov		CINW	8	ā	83	8	·		묽	·		μV	9			₹	L	NIN3		NL3	0	·	8	Ð	063	8
		ŝ		WW2	V 83	HS2	2	082	0		8	RT2		AMO	CT2			ΔP	L	NW2		NL2	0	·	R	02	082	
				MM1	VS1	HS1	9	081	CM1		R	RT1	L	5	9	L		ŝ	L	NW1		NL1	0	·	Q	9	081	
				MMO	89	H30	50	080	CIMD		•	RTO		8	CTO			STB	L	NWO		DN I	0	-	8	8	OBO	
Seads data from the FIAM.	Writes data to the RAM.	nitially sets the FIAM address to the address counter (AC).		Specifies write data mask (WM15–0) at RAM write.	Sets vertical cursor start (VS6-0) and end (VE6-0).	Sets horizontal oursor start (HS6–0) and end (HE6–0).	Sets the display-start raster+ow (SL6-0).	Specifies double-height display start (DS6-0) and end (DE6-0).	specifies cursor display on (C) and cursor display mode (CM1-0).	note (GS), double-height display on (DHE), and partial scroll (PS1-0).	Specifies display on (D), black-and-white reversed display (REV), grayscale	Specifies the amount of write-data rotation (RT 2-0).	norement/decrement mode (VD).	Specifies the logical operation (I.G1-0), AC counter mode (AM1-0), and	Sets the contrast adjustment (CTS-0).	trive bias value (BS2-0).	soosting cycle (DC1-0), boosting ouput multiplying factor (BT1-0), and LCI.	Sets the sleep mode (SLP), standby mode (STB), LCD power on (AP1-0),	sumber of n-raster-rows (NW4-0) at C-pattern AC drive.	sets the LCD drive AC waveform (BIC), and EOR output (EOR) or the	SGS), driving duty ratio (NL3–0), and centering (CN).	Sets the common driver shift direction (CMS), segment driver shift direction	Yeads 0750H	Starts the oscillation mode.	Needs the driving raider-row position (1.6–0) and contrast setting (C5–0).	Sets the index register value.	Description	
0	0	0		0	0	0	0	0			0	0	╞	0	0	\vdash	-	0	F	0	\vdash	0	0	10 mi	0	0	Cycle	fon U

Index

The index instruction specifies the RAM control indexes (R00 to R12). It sets the register number in the range of 00000 to 10010 in binary form.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	*	*	*	*	*	*	*	*	*	*	*	ID4	ID3	ID2	ID1	ID0

Index Instruction

Status Read

The status read instruction reads the internal status of the HD66750S.

L6–0: Indicate the driving raster-row position where the liquid crystal display is being driven.

C5–0: Read the contrast setting values (CT5–0).

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	L6	L5	L4	L3	L2	L1	L0	0	0	C5	C4	C3	C2	C1	C0

Status Read Instruction

Start Oscillation

The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.)

If this register is read forcibly when R/W = 1,0750H is read.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1
										l	[[[l	[l	
1	1	0	0	0	0	0	1	1	1	0	1	0	1	0	0	0	0

Start Oscillation Instruction

Driver Output Control

CMS: Selects the output shift direction of a common driver. When CMS = 0, COM1/128 shifts to COM1, and COM128/1 to COM128. When CMS = 1, COM1/128 shifts to COM128, and COM128/1 to COM1. Output position of a common driver shifts depending on the CN bit setting.

SGS: Selects the output shift direction of a segment driver. When SGS = 0, SEG1/128 shifts to SEG1, and SEG128/1 to SEG128. When SGS = 1, SEG1/128 shifts to SEG128, and SEG128/1 to SEG1.

CN: When CN = 1, the display position is shifted down by 32 raster-rows and display starts from COM33. When the liquid crystal is driven at a low duty ratio in the system wait state, it can be partially displayed at the center of the screen. For details, see the Partial-display-on Function section.

NL3-0: Specify the LCD drive duty ratio. The duty ratio can be adjusted for every eight raster-rows. CGRAM address mapping does not depend on the setting value of the drive duty ratio.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	*	*	*	*	*	смѕ	SGS	*	CN	*	*	NL3	NL2	NL1	NL0

Driver Output Control Instruction

NL3	NL2	NL1	NL0	Display Size	LCD Drive Duty	Common Driver Used
0	0	0	0	128 x 8 dots	1/8 Duty	COM1–COM8
0	0	0	1	128 x 16 dots	1/16 Duty	COM1–COM16
0	0	1	0	128 x 24 dots	1/24 Duty	COM1–COM24
0	0	1	1	128 x 32 dots	1/32 Duty	COM1–COM32
0	1	0	0	128 x 40 dots	1/40 Duty	COM1–COM40
0	1	0	1	128 x 48 dots	1/48 Duty	COM1–COM48
0	1	1	0	128 x 56 dots	1/56 Duty	COM1–COM56
0	1	1	1	128 x 64 dots	1/64 Duty	COM1–COM64
1	0	0	0	128 x 72 dots	1/72 Duty	COM1–COM72
1	0	0	1	128 x 80 dots	1/80 Duty	COM1–COM80
1	0	1	0	128 x 88 dots	1/88 Duty	COM1–COM88
1	0	1	1	128 x 96 dots	1/96 Duty	COM1–COM96
1	1	0	0	128 x 104 dots	1/104 Duty	COM1–COM104
1	1	0	1	128 x 112 dots	1/112 Duty	COM1–COM112
1	1	1	0	128 x 120 dots	1/120 Duty	COM1–COM120
1	1	1	1	128 x 128 dots	1/128 Duty	COM1–COM128

NL Bits and Drive Duty

LCD-Driving-Waveform Control

B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive. When B/C = 1, a C-pattern waveform is generated and alternates in each raster-row specified by bits EOR and NW4–NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row Reversed AC Drive section.

EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the LCD drive duty ratio and the n raster-row. For details, see the n-raster-row Reversed AC Drive section.

NW4–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C = 1). NW4–NW0 alternate for every set value + 1 raster-row, and the first to the 32nd raster-rows can be selected.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	*	*	*	*	*	*	*	*	B/C	EOR	NW4	NW3	NW2	NW1	NW0

LCD-Driving Waveform Control Instruction

Common Driver Pin Function

	Common Drive	er Pin Function		
	CN = 0 (Norma	al Output)	CN = 1 (Center	Output)
Common Driver Pin	CMS = 0	CMS = 1	CMS = 0	CMS = 1
COM1/128	COM1	COM128	COM97	COM96
:	•••••	:	::	
COM8/121	COM8	COM121	COM104	COM89
COM9/120	COM9	COM120	COM105	COM88
•	•	•	•	•
COM16/113	COM16	COM113	COM112	COM81
COM17/112	COM17	COM112	COM113	COM80
•	•	:	•	•
COM24/105	COM24	COM105	COM120	COM73
COM25/104	COM25	COM104	(COM121)	COM72
•	•	•	•	•
COM32/97	COM32	COM97	(COM128)	COM65
COM33/96	COM33	COM96	COM1	COM64
•	•	•	•	•
COM40/89	COM40	COM89	COM8	COM57
COM41/88	COM41	COM88	COM9	COM56
:	:	:	:	:
COM48/81	COM48	COM81	COM16	COM49
COM49/80	COM49	COM80	COM17	COM48
•	:	:	:	:
COM56/73	COM56	COM73	COM24	COM41
COM57/72	COM57	COM72	COM25	COM40
•	•	•	•	•
COM64/65	COM64	COM65	COM32	COM33
COM65/64	COM65	COM64	COM33	COM32
•	:	:	:	:
COM72/57	COM72	COM57	COM40	COM25
COM73/56	COM73	COM56	COM41	COM24
:	:	:	:	:
COM80/49	COM80	COM49	COM48	COM17
COM81/48	COM81	COM48	COM49	COM16
•	•	•	•	
COM88/41	COM88	COM41	COM56	СОМ9
COM89/40	COM89	COM40	COM57	COM8
•	•	•	•	•
COM96/33	COM96	COM33	COM64	COM1

Common Driver Pin Function (cont)

	Common Driver	Pin Function		
	CN = 0 (Normal C	Dutput)	CN = 1 (Center	Output)
Common Driver Pin	CMS = 0	CMS = 1	CMS = 0	CMS = 1
COM97/32	COM97	COM32	COM65	(COM128)
•	:	:	:	:
COM104/25	COM104	COM25	COM72	(COM121)
COM105/24	COM105	COM24	COM73	COM120
•	:	:	•	•
COM112/17	COM112	COM17	COM80	COM113
COM113/16	COM113	COM16	COM81	COM112
:	:	:	:	:
COM120/9	COM120	COM9	COM88	COM105
COM121/8	COM121	COM8	COM89	COM104
:	:	:	:	:
COM128/1	COM128	COM1	COM96	COM97

Power Control

BS2–0: The LCD drive bias value is set within the range of a 1/4 to 1/11 bias. The LCD drive bias value can be selected according to its drive duty ratio and voltage. For details, see the Liquid Crystal Display Drive Bias Selector section.

BT1-0: The output factor of VLOUT between two-times, five-times, six-times, and seven-times boost is switched. The LCD drive voltage level can be selected according to its drive duty ratio and bias. Lower amplification of the booster consumes less current.

DC1-0: The operating frequency in the booster is selected. When the boosting operating frequency is high, the driving ability of the booster and the display quality become high, but the current consumption is increased. Adjust the frequency considering the display quality and the current consumption.

AP1-0: The amount of fixed current from the fixed current source in the operational amplifier for V pins (V1 to V5) is adjusted. When the amount of fixed current is large, the driving ability of the booster and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption.

During no display, when AP1-0 = 00, the current consumption can be reduced by ending the operational amplifier and booster operation.

BS Bits and LCD Drive Bias Value

BS2	BS1	BS0	LCD Drive Bias Value
0	0	0	1/11 bias drive
0	0	1	1/10 bias drive
0	1	0	1/9 bias drive
0	1	1	1/8 bias drive
1	0	0	1/7 bias drive
1	0	1	1/6 bias drive
1	1	0	1/5 bias drive
1	1	1	1/4 bias drive

BT Bits and Output Level

BT1	BT0	V5OUT Output Level
0	0	Two-times boost
0	1	Five-times boost
1	0	Six-times boost
1	1	Seven-times boost

DC Bits and Operating Clock Frequency

DC1	DC0	Operating Clock Frequency in the Booster
0	0	32-divided clock
0	1	16-divided clock
1	0	8-divided clock
1	1	4-divided clock

AP Bits and Amount of Fixed Current

AP1	AP0	Amount of Fixed Current in the Operational Amplifier
0	0	Operational amplifier and booster do not operate.
0	1	Small
1	0	Middle
1	1	Large

SLP: When SLP = 1, the HD66750S enters the sleep mode, where the internal display operations are halted except for the R-C oscillator, thus reducing current consumption. For details, see the Sleep Mode section. Only the following instructions can be executed during the sleep mode.

Power control (BS2-0, BT1-0, DC1-0, AP1-0, SLP, and STB bits)

U.R.T.

During the sleep mode, the other CGRAM data and instructions cannot be updated although they are

UNITED RADIANT TECHNOLOGY CORP.

Page: 20 Next: 21

retained.

STB: When STB = 1, the HD66750S enters the standby mode, where display operation completely stops, halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For details, see the Standby Mode section.

Only the following instructions can be executed during the standby mode.

- a. Standby mode cancel (STB = 0)
- b. Start oscillation
- c. Power control (BS2-0, BT1-0, DC1-0, AP1-0, SLP, and STB bits)

During the standby mode, the CGRAM data and instructions may be lost. To prevent this, they must be set again after the standby mode is canceled.

R/W	/	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0		1	*	*	*	BS2	BS1	BS0	BT1	BT0	*	*	DC1	DC0	AP1	AP0	SLP	STB

Power Control Instruction

Contrast Control

CT5–0: These bits control the LCD drive voltage (potential difference between V1 and GND) to adjust 64-step contrast. For details, see the Contrast Adjuster section.

R/W	RS	DB15	DB14	DB13	DB12	2 DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	*	*	*	*	*	*	*	*	*	CT5	СТ4	СТЗ	CT2	CT1	СТО

Contrast Control Instruction

URT UNITED RADIANT TECHNOLOGY CORP.

Page: 21 Next: 22

CT Bits and Variable Resistor Value of Contrast Adjuster

CT Set	Value					
CT5	CT4	СТ3	CT2	CT1	СТ0	Variable Resistor (VR)
0	0	0	0	0	0	3.20 x R
0	0	0	0	0	1	3.15 x R
0	0	0	0	1	0	3.10 x R
0	0	0	0	1	1	3.05 x R
0	0	0	1	0	0	3.00 x R
			•			•
			•			•
0	1	1	1	1	1	1.65 x R
1	0	0	0	0	0	1.60 x R
1	0	0	0	0	1	1.55 x R
1	0	0	0	1	0	1.50 x R
			•			•
			•			•
1	1	1	1	0	1	0.15 x R
1	1	1	1	1	0	0.10 x R
1	1	1	1	1	1	0.05 x R

Entry Mode

Rotation

The write data sent from the microcomputer is modified in the HD66750S and written to the CGRAM. The display data in the CGRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For details, see the Graphics Operation Function section.

I/D: When I/D = 1, the address counter (AC) is automatically incremented by 1 after the data is written to the CGRAM. When I/D = 0, the AC is automatically decremented by 1 after the data is written to the CGRAM.

AM1–0: Set the automatic update method of the AC after the data is written to the CGRAM. When AM1-0 = 00, the data is continuously written in parallel. When AM1-0 = 01, the data is continuously written vertically. When AM1-0 = 10, the data is continuously written vertically with two-word width (32-bit length).

LG1–0: Write again the data read from the CGRAM and the data written from the microcomputer to the CGRAM by a logical operation. When LG1-0 = 00, replace (no logical operation) is done. ORed when LG1-0 = 01, ANDed when LG1-0 = 10, and EORed when LG1-0 = 11.

RT2–0: Write the data sent from the microcomputer to the CGRAM by rotating in a bit unit. RT3–0 specify rotation. For example, when RT2-0 = 001, the data is rotated in the upper side by two bits. When RT2-0 = 111, the data is rotated in the upper side by 14 bits. The upper bit overflown in the most significant bit (MSB) side is rotated in the least significant bit (LSB) side.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	*	*	*	*	*	*	*	*	*	*	I/D	AM1	AM0	LG1	LG0
0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	RT2	RT1	RT0

Entry Mode and Rotation Instruction

Logical Operation and Rotation for the CGRAM

UNITED RADIANT TECHNOLOGY CORP.

Page: 23 Next: 24

Display Control

PS1–0: When PS1-0 = 01, only the upper eight raster-rows (COM1–COM8) are fixed-displayed in vertical smooth scrolling, and the other display raster-rows are smooth-scrolled. When PS1-0 = 10, the upper 16 raster-rows (COM1–COM16) are fixed-displayed. When PS1-0 = 11, the upper 24 raster-rows (COM1–COM24) are fixed-displayed. For details, see the Partial Smooth Scroll Display Function section.

DHE: When DHE = 1, the double height between raster-rows specified in the Double-height Display Position section is displayed. For details, see the Double-height Display section.

GS: When GS = 0, the grayscale level at a weak-colored display (DB = 01) is 1/3. When GS = 1, the grayscale level at weak-colored display is 1/2, and at strong-colored display (when DB = 10) it is 2/3.

REV: Displays all character and graphics display sections with black-and-white reversal when REV = 1. For details, see the Reversed Display Function section.

D: Display is on when D = 1 and off when D = 0. When off, the display data remains in the CGRAM, and can be displayed instantly by setting D = 1. When D is 0, the display is off with the SEG1 to SEG128 outputs and COM1 to COM128 outputs set to the GND level. Because of this, the HD66750S can control the charging current for the LCD with AC driving.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	*	*	*	*	*	*	*	*	*	PS1	PS0	DHE	GS	REV	D

Display Control Instruction

Cursor Control

C: When C = 1, the window cursor display is started. The display mode is selected by the CM1–0 bits, and the display area is specified in a dot unit by the horizontal cursor position register (HS6–0 and HE6–0 bits) and vertical cursor position register (VS6–0 and VE6–0 bits). For details, see the Window Cursor Display section.

CM1–0: The display mode of the window cursor is selected. These bits can display a white-blink cursor, black-blink cursor, black-and-white reversed cursor, and black-and-white-reversed blink cursor.

R/W	RS	DB15	DB14	1 DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	С	CM1	СМО

Cursor Control Instruction

CM Bits and Window Cursor Display Mode

CM1	CM0	Window Cursor Display Mode
0	0	White-blink cursor (alternately blinking between the normal display and an all-white display (all unlit))
0	1	Black-blink cursor (alternately blinking between the normal display and an all-black display (all lit))
1	0	Black-and-white reversed cursor (black-and-white-reversed normal display (no blinking))
1	1	Black-and-white-reversed blink cursor (alternately blinking the black-and-white-reversed normal display)

Double-height Display Position

DS6–0: Specify any common raster-row position where the double-height display starts. Note that no scrolling is done by vertical scrolling. For details, see the Double-height Display section.

DE6-0: Specify any common raster-row position where the double-height display ends. Set the end position of the double-height display after the start position of the double-height display, satisfying the relationship DS6–0 \leq DE6–0. When the area specifying the double height has an odd number of raster-rows, the double-height display is done for the DE6–0 + 1 raster-rows.

When the double-height display is not used, set the DHE bit in the display-control instruction register to 0.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	DE6	DE5	DE4	DE3	DE2	DE1	DE0	*	DS6	DS5	DS4	DS3	DS2	DS1	DS0

Double-height Display Position Instruction

Vertical Scroll Control

U.R.T.

SL6–0: Specify the display start raster-row for vertical smooth scrolling. Any raster-row from the first to 128th can be selected (table 14). After the 128th raster-row is displayed, the display restarts from the first raster-row. For details, see the Vertical Smooth Scroll section.

In partial smooth scrolling, these bits specify the display start raster-row of the next fixed-display rasterrow. For details, see the Partial Smooth Scroll Display Function section.

F	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	1	*	*	*	*	*	*	*	*	*	SL6	SL5	SL4	SL3	SL2	SL1	SL0

Vertical Scroll Control Instruction

SL Bits and Display-start Raster-row

SL6	SL5	SL4	SL3	SL2	SL1	SL0	Display-start Raster-row
0	0	0	0	0	0	0	1st raster-row
0	0	0	0	0	0	1	2nd raster-row
0	0	0	0	0	1	0	3rd raster-row
0	0	0	0	0	1	1	4th raster-row
0	0	0	0	1	0	0	5th raster-row
:	•						:
1	1	1	1	1	1	0	127th raster-row
1	1	1	1	1	1	1	128th raster-row

Horizontal Cursor Position

Vertical Cursor Position

HS6-0: Specify the start position for horizontally displaying the window cursor in a dot unit. The cursor is displayed from the 'set value + 1' dot. Ensure that $HS6-0 \le HE6-0$.

HE6-0: Specify the end position for horizontally displaying the window cursor in a dot unit. The cursor is displayed to the 'set value + 1' dot. Ensure that $HS6-0 \le HE6-0$.

VS6-0: Specify the start position for vertically displaying the window cursor in a dot unit. The cursor is displayed from the 'set value + 1' dot. Ensure that $VS6-0 \le VE6-0$.

VE6-0: Specify the end position for vertically displaying the window cursor in a dot unit. The cursor is displayed to the 'set value + 1' dot. Ensure that VS6–0 \leq VE6–0. In vertical scrolling, rewrite VS6–0 and VE6–0 since this window cursor does not move vertically.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	HE6	HE5	HE4	HE3	HE2	HE1	HE0	*	HS6	HS5	HS4	HS3	HS2	HS1	HS0
0	1	*	VE6	VE5	VE4	VE3	VE2	VE1	VE0	*	VS6	VS5	VS4	VS3	VS2	VS1	VS0

Horizontal Cursor Position and Vertical Cursor Position Instruction

RAM Write Data Mask

WM15-0: In writing to the CGRAM, these bits mask writing in a bit unit. When WM15 = 1, this bit masks the write data of DB15 and does not write to the CGRAM. Similarly, the WM14–0 bits mask the write data of DB14–0 in a bit unit. However, when AM = 10, the write data is masked with the set values of VM15–0 for the odd-times CGRAM write. It is also masked automatically with the reversed set values of VM15–0 for the even-times CGRAM write. For details, see the Graphics Operation Function section.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	VM 15	VM 14	VM 13	VM 12	VM 11	VM 10	VM 9	VM 8	VM 7	VM 6	VM 5	VM 4	VM 3	VM 2	VM 1	VM 0

RAM Write Data Mask Instruction

RAM Address Set

AD10-0: Initially set CGRAM addresses to the address counter (AC). Once the CGRAM data is written, the AC is automatically updated according to the AM1–0 and I/D bit settings. This allows consecutive accesses without resetting addresses. Once the CGRAM data is read, the AC is not automatically updated. CGRAM address setting is not allowed in the sleep mode or standby mode.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	*	*	*	*	*	AD 10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0

RAM Address Set Instruction

AD Bits and CGRAM Setting

AD10-AD0	CGRAM Setting
"000"H–"00F"H	Bitmap data for COM1
"010"H–"01F"H	Bitmap data for COM2
"020"H–"02F"H	Bitmap data for COM3
"030"H–"03F"H	Bitmap data for COM4
:	:
"760"H–"76F"H	Bitmap data for COM119
"770"H–"77F"H	Bitmap data for COM120
"780"H–"78F"H	Bitmap data for COM121
"790"H–"79F"H	Bitmap data for COM122
"7A0"H–"7AF"H	Bitmap data for COM123
"7B0"H–"7BF"H	Bitmap data for COM124
"7C0"H–"7CF"H	Bitmap data for COM125
"7D0"H–"7DF"H	Bitmap data for COM126
"7E0"H–"7EF"H	Bitmap data for COM127
"7F0"H–"7FF"H	Bitmap data for COM128

URI UNITED RADIANT TECHNOLOGY CORP.

Page: 27 Next: 28

Write Data to CGRAM

WD15-0 : Write 16-bit data to the CGRAM. After a write, the address is automatically updated according to the AM1–0 and I/D bit settings. During the sleep and standby modes, the CGRAM cannot be accessed.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	WD 15	WD 14	WD 13	WD 12	WD 11	WD 10	WD 9	WD 8	WD 7	WD 6	WD 5	WD 4	WD 3	WD 2	WD 1	WD 0

Write Data to CGRAM Instruction

Read Data from CGRAM

RD15-0 : Read 16-bit data from the CGRAM. When the data is read to the microcomputer, the first-word read immediately after the CGRAM address setting is latched from the CGRAM to the internal read-data latch. The data on the data bus (DB15–0) becomes invalid and the second-word read is normal.

When bit processing, such as a logical operation, is performed within the HD66750S, only one read can be processed since the latched data in the first word is used.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	RD 15	RD 14	RD 13	RD 12	RD 11	RD 10	RD 9	RD 8	RD 7	RD 6	RD 5	RD 4	RD 3	RD 2	RD 1	RD 0

Read Data from CGRAM Instruction

CGRAM Read Sequence

 \equiv United Radiant Technology corp.

4.3 CGRAM Address Map

Relationship Between Display Position and CGRAM Address

s D	egment Driver	SEG1/128	SEG2/127	SEG3/126	SEG4/125	SEG5/124	SEG6/123	SEG7/122	SEG8/121	SEG9/120	••	SEG16/113	SEG17/112		SEG24/105		SEG121/8	: SEG128/1
Dit	SGS="0"	D0 D1	D2 D3	D4 D5	D6 D7	D8 D9	D10 D11	1 D12 D13	D14 D15	D0 D1		D15	D0 D1		D15	•••••	D0 D1	■■ D15
ы	SGS="1"	D15 D14	D13 D12	D11 D10	D9 D8	D7 D6	D5 D4	D3 D2	D1 D0	D15 D1	4 • •	D0	D15 D14	••	D0	•••••	D15 D14	•• D0
C	COM1			Ac	ddress:	"000"I	4			"0	01"H		"00	2"H		•••••	"00	F"H
C	COM2			Ac	ddress:	"010"I	4			"0	11"H		"01	2"H		•••••	"01	F"H
C	СОМЗ			Ac	ddress:	"020"I	4			"0	21"H		"02	2"H		•••••	"02	F"H
0	COM4			Ac	ddress:	"030"I	H			"0	31"H		"03	2"H		•••••	"03	F"H
0	COM5			Ac	ddress:	"040"l	4			"0	41"H		"04	2"H		•••••	"04	F"H
0	COM6			Ac	ddress:	"050"l	4			"0	51"H		"05	2"H		•••••	"05	F"H
0	COM7			Ac	ddress:	"060"l	H			"0	61"H		"06	2"H		•••••	"06	F"H
0	COM8			Ac	ddress:	"070"l	4			"0	71"H		"07	2"H		•••••	"07	F"H
0	COM9			Ac	ddress:	"080"I	4			"0	81"H		"08	2"H		•••••	"08	F"H
0	COM10			Ac	ddress:	"090"l	4			"0	91"H		"09	2"H		•••••	"09	F"H
0	COM11			Ac	ddress:	"0A0"	Н			"0	A1"H	ł	"0A	\2"H		•••••	"0A	F"H
0	COM12			Ac	ddress:	"0B0"	Н			"0	B1"H	ł	"0E	32"H		•••••	"0B	F"H
0	COM13			Ac	ddress:	"0C0"	H			"0	C1"H		"0C	2"H		•••••	"0C	F"H
0	COM14			Ac	ddress:	"0D0"	Н			"0	D1"H		"0D	2"H		•••••	"0D	F"H
C	COM15			Ac	ddress:	"0E0"	Н			"0	E1"H	ł	"0E	2"H		•••••	"0E	F"H
C	COM16			Ac	ddress:	"0F0"	H			"0	F1"H		"0F	2"H		•••••	"0F	F"H
0	COM17			Ac	ddress:	"100"l	4			"1	01"H		"10	2"H		•••••	"10	F"H
0	COM18			Ac	ddress:	"110"I	4			"1	11"H		"11	2"H		•••••	"11	F"H
0	COM19			Ac	ddress:	"120"l	4			"1	21"H		"12	2"H		•••••	"12	F"H
0	COM20			Ac	ddress:	"130"l	4			"1	31"H		"13	2"H		•••••	"13	F"H
																•••••		
	COM125			Ad	ddress:	"7C0"	Н			"7	C1"H		"7C	2"H		•••••	"7C	F"H
C	COM126			Ac	ddress:	"7D0"	Н			"7	D1"H		"7D	2"H		•••••	"7D	F"H
C	COM127			Ac	dress:	"7E0"	Н			"7	E1"H	1	"7E	2"H		•••••	"7E	F"H
	COM128			Ac	dress:	"7F0"	-			"7	F1"H		"7F	2"H		•••••	"7F	F"H

Relationship between CGRAM Data and Display Contents

Upper bit	Lower bit	LCD
0	0	Non-selection display (unlit)
0	1	1/3 or 1/2 level grayscale display (selected by the GS bit)
1	0	2/3 level gray scale
1	1	Selection display (lit)

Note : Upper bits: DB15, DB13, DB11, DB9, DB7, DB5, DB3, DB1 Lower bits: DB14, DB12, DB10, DB8, DB6, DB4, DB2, DB0

Page: 29 Next: 30

4.4 Graphics Operation Function

8-bit Bus Interface

Setting the IM2/1/0 (interface mode) to the GND/GND/Vcc level allows 68-system E-clock-synchronized 8-bit parallel data transfer using pins DB15–DB8. Setting the IM2/1/0 to the GND/Vcc/Vcc level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB7–DB0 to the Vcc or GND level.

Note: Transfer synchronization function for an 8-bit bus interface The HD66750S supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a 00H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system.

The module can greatly reduce the load of the microcomputer graphics software processing through the 16-bit bus architecture and graphics-bit operation function. This function supports the following :

- 1. A write data mask function that selectively rewrite some of the bits in the 16-bit write data.
- 2. A bit rotation function that shifts and writes the data sent from the microcomputer in a bit unit.
- 3. A logical operation function that writes the data sent from the microcomputer and the original RAM data by a logical operation.

Since the display data in the graphics RAM (CGRAM) can be quickly rewritten, the load of the microcomputer processing can be reduced in the large display screen when a font pattern, such as kanji characters, is developed for any position (BiTBLT processing).

The graphics bit operation can be controlled by combining the entry mode register, the bit set value of the RAM-write-data mask register, and the read/write from the microcomputer.

	Bit Setting					
Operation Mode	I/D	AM	LG	Operation and Usage		
Write mode 1	0/1	00	00	Horizontal data replacement, horizontal-border drawing		
Write mode 2	0/1	01	00	Vertical data replacement, font development, vertical- border drawing		
Write mode 3	0/1	10	00	Vertical data replacement with two-word width, kanji- font development		
Read/write mode 1	0/1	00	01 10 11	Horizontal data replacement with logical operation, horizontal-border drawing		
Read/write mode 2	0/1	01	01 10 11	Vertical data replacement with logical operation, vertical-border drawing		
Read/write mode 3	0/1	10	01 10 11	Horizontal data replacement with two-word-width logical operation		

Graphics Operation

Data Processing Flow of the Graphics Bit Operation

1. Write mode 1: AM1–0 = 00, LG1–0 = 00

This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM (CGRAM) or to draw borders. The rotation function (RT2–0) or write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left edge of the graphics RAM.

2. Write mode 2: AM1–0 = 01, LG1–0 = 00

This mode is used when the data is vertically written at high speed. It can also be used to initialize the graphics RAM (CGRAM), develop the font pattern in the vertical direction, or draw borders. The rotation function (RT2–0) or write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 16, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the graphics RAM.

Writing Operation of Write Mode 2

3. Write mode 3: AM1–0 = 10, LG1–0 = 00

This mode is used when the data is written at high speed by vertically shifting bits. It can also be used to write the 16-bit data for two words into the graphics RAM (CGRAM), develop the font pattern, or transfer the BiTBLT as a bit unit. The rotation function (RT2–0) or write-data mask function (WM15–0) are also enabled in these operation. However, although the write-data mask function masks the bit position set with the write-data mask register (WM15–0) at the odd-times (such as the first or third) write, the function masks the bit position that reversed the setting value of the write-data mask register (WM15–0) at the even-times (such as the second or fourth) write. After the odd-times writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0). After the even-times writing, the AC automatically increments or decrements by -1 + 16 (I/D = 1) or +1 + 16 (I/D = 0). The AC automatically jumps to the upper edge after it has reached the lower edge of the graphics RAM.

URT UNITED RADIANT TECHNOLOGY CORP.

Page: 33 Next: 34

Writing Operation of Write Mode 3

4. Read/Write mode 1: AM1–0 = 00, LG1–0 = 01/10/11

This mode is used when the data is horizontally written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the graphics RAM (CGRAM), performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the CGRAM. This mode can read the data during the same bus cycle as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. The rotation function (RT2–0) or write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edges of the graphics RAM.

UNITED RADIANT TECHNOLOGY CORP.

Page: 34 Next: 35

Writing Operation of Read/Write Mode 1

5. Read/Write mode 2: AM1–0 = 01, LG1–0 = 01/10/11

This mode is used when the data is vertically written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the graphics RAM (CGRAM), performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the CGRAM. This mode can read the data during the same bus cycle as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. The rotation function (RT2–0) or write-data mask function (WM15–0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 16, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the graphics RAM.

UNITED RADIANT TECHNOLOGY CORP.

Page: 35 Next: 36

Writing Operation of Read/Write Mode 2

6. Read/Write mode 3: AM1–0 = 10, LG1–0 = 01/10/11

This mode is used when the data is written with high speed by vertically shifting bits and by performing logical operation with the original data. It can be also used to write the 16-bit data for two words into the graphics RAM (CGRAM), develop the font pattern, or transfer the BiTBLT as a bit unit. This mode can read the data during the same bus cycle as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. The rotation function (RT2–0) or write-data mask function (WM15–0) are also enabled in these operations. However, although the write-data mask function masks the bit position set with the write-data mask register (WM15–0) at the odd-times (such as the first or third) write, the function masks the bit position which reversed the setting value of the write-data mask register (WM15–0) at the even-times (such as the second or fourth) write. After the odd-times writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0). After the even-times writing, the AC automatically increments or decrements by -1 + 16 (I/D = 1) or +1 + 16 (I/D = 0). The AC automatically jumps to the upper edge after it has reached the lower edge of the graphics RAM.

UNITED RADIANT TECHNOLOGY CORP.

Page: 36 Next: 37

Writing Operation of Read/Write Mode 3

UNITED RADIANT TECHNOLOGY CORP.

Page: 37 Next: 38

4.5 Contrast Adjuster Function

Software can adjust 64-step contrast for an LCD by varying the liquid-crystal drive voltage (potential difference between V_{LCD} and V1) through the CT bits of the contrast adjustment register (electron volume function). The value of a variable resistor between V_{LCD} and V1 (VR) can be precisely adjusted in a 0.05 x R unit within a range from 0.05 x R through 3.20 x R, where R is a reference resistance obtained by dividing the total resistance.

The HD66750/1 incorporates a voltage-follower operational amplifier for each of V1 to V5 to reduce current flowing through the internal bleeder resistors, which generate different liquid-crystal drive voltages. Thus, CT5-0 bits must be adjusted so that potential difference between V_{LCD} and V1 is 0.1 V or higher and that between V4 and GND is 1.4 V or higher when liquid-crystal drives, particularly when the VR is small.

Contrast Adjuster

Contrast Adjustment Bits (CT) and Variable Resistor Values

CT set value						Variable Resistor Value (VR)	Potential Difference between V1 and GND	Display Color
CT5	CT4	СТ3	CT2	CT1	СТ0	, , ,		
0	0	0	0	0	0	3.20 x R	(Small)	(Light)
0	0	0	0	0	1	3.15 x R	:	:
0	0	0	0	1	0	3.10 x R	:	:
0	0	0	0	1	1	3.05 x R	:	:
0	0	0	1	0	0	3.00 x R	:	:
0	0	0	1	0	1	2.95x R	:	:
0	0	0	1	1	0	2.90 x R	:	:
0	0	0	1	1	1	2.85 x R	:	:
0	0	1	0	0	0	2.80 x R	:	:
0	0	1	0	0	1	2.75 x R	:	:
0	0	1	0	1	0	2.70 x R	:	:
0	0	1	0	1	1	2.65x R	:	:
0	0	1	1	0	0	2.60 x R	:	:
:	:	:	:	:		:	:	:
0	1	1	1	1	1	1.65 x R	:	:
1	0	0	0	0	0	1.60 x R	:	:
1	0	0	0	0	1	1.55 x R	:	:
1	0	0	0	1	0	1.50 x R	:	:
1	0	0	0	1	1	1.45 x R	:	:
1	0	0	1	0	0	1.40 x R	:	:
1	0	0	1	0	1	1.35 x R	:	:
1	0	0	1	1	0	1.30 x R	:	:
1	0	0	1	1	1	1.25 x R	:	:
1	0	1	0	0	0	1.20 x R	:	:
1	0	1	0	0	1	1.15 x R	:	:
:	:	:	:	:	:	:	:	:
1	1	1	1	0	0	0.20 x R	:	:
1	1	1	1	0	1	0.15 x R	:	:
1	1	1	1	1	0	0.10 x R	:	:
1	1	1	1	1	1	0.05 x R	(Large)	(Deep)

UNITED RADIANT TECHNOLOGY CORP.

Page: 39 Next: 40

4.6 Four-grayscale Display Function

The HD66750S supports the four-grayscale monochrome display function. The four-grayscale monochrome display is used for the display data of the two-bit pixel set sent to the CGRAM. There are four grayscale levels: always unlit, weak middle level, strong middle level, and always lit. In the weak middle-level grayscale display, the GS bit can select the 1/3 or 1/2 level.

The frame rate control (FRC) method is used for grayscale control.

Relationships between the CGRAM Data and the Display Contents

Upper	Bit Lower Bit	Liquid Crystal Display
0	0	Non-selected (unlit)
0	1	GS = 0: 1/3-level grayscale (one frame lit during a three-frame period)
		GS = 1: 1/2-level grayscale (one frame lit during a two-frame period)
1	0	2/3-level grayscale (two frames lit during a three-frame period)
1	1	Selected (lit)
Note:	Upper bits: DB15, DE	813, DB11, DB9, DB7, DB5, DB3, and DB1

Lower bits: DB15, DB13, DB11, DB9, DB7, DB5, DB3, and DB1 Lower bits: DB14, DB12, DB10, DB8, DB6, DB4, DB2, and DB0

Four-grayscale Monochrome Display

UNITED RADIANT TECHNOLOGY CORP.

Page: 40 Next:41

4.7 Window Cursor Display Function

The HD66750S displays the window cursor by specifying a window area. The horizontal display position of the window cursor is specified with the horizontal cursor position register (HS6-0 to HE6-0), and the vertical display position is specified with the vertical cursor position register (VS6-0 or VE6-0). In these display position setting registers, ensure that HS6-0 \leq HE6-0 and VS6-0 \leq VE6-0. If these relationships are not satisfied, normal display cannot be attained. In addition, if the setting is VS6-0 = VE6-0 = 00H, a cursor is displayed on a raster-row at the most-upper edge of the screen.

This window cursor can automatically display the hardware-supported block cursor, highlight window, or menu bar. The CM1-0 bits select the following four displays in each window cursor:

- 1. White-blink cursor (CM1-0 = 00): Alternately blinks between the normal display and an all-white (unlit) display
- 2. Black-blink cursor (CM1-0 = 01): Alternately blinks between the normal display and an all-black (all lit) display
- 3. Black-and-white reversed cursor (CM1-0 = 10): Black-and-white-reversed normal display (no blinking)
- 4. Black-and-white-reversed blink cursor (CM1-0 = 11): Alternately blinks between the normal display and a black-and-white-reversed display

The above blinking display is switched in a 32-frame unit.

In vertical scrolling, note that this window cursor does not automatically move vertically.

White Blink Cursor Display

Black Blink Cursor Display

Black-and-white Reversed Cursor Display

Black-and-white Reversed Blink Cursor Display

UNITED RADIANT TECHNOLOGY CORP.

U.R.T.

Page: 42 Next: 43

4.8 Vertical Smooth Scroll Function

The HD66750S can scroll the graphics display vertically in units of raster-rows. The data storage capacity of the CGRAM is 128 raster-rows. Continuous smooth vertical scrolling is achieved by writing display data into a raster-row area that is not being used for display. After the 128th raster-row is displayed, the first raster-row is displayed again. Using the status read, the user can check the display raster-rows (L6-0) that are currently driving the LCD, and flicker can be eliminated by writing the display data in the CGRAM while the LCD is not driven.

Additionally, when display areas of a graphics icon such as a pictogram or a menu bar are partially fixeddisplayed, the remaining areas can be displayed. For details, see the Partial Smooth Scroll Display Function section.

Specifically, this function is controlled by incrementing or decrementing the value in the display-start raster-row bits (SL6-0) by 1. For example, to smoothly scroll up, increment display-start raster-row bits (SL6-0) by 1 from 0000000 to 1111111 to scroll 128 raster-rows.

Note that the vertical double-height display or window cursor display is not automatically changed in synchronization with the vertical scrolling.

When the response speed of the liquid crystal is low or when high-speed scrolling is needed, two- to fourraster-row scrolling is recommended.

UNITED RADIANT TECHNOLOGY CORP.

U.R.T.

Page: 44 Next: 45

4.9 Partial Smooth Scroll Display Function

The HD66750S can partially fixed-display the areas of a graphics icon such as a pictogram or a menu bar, and perform vertical smooth scrolling of the remaining bit-map areas. Since the PS1 to PS0 bits are not used for smooth scrolling of the upper first to 24th display raster-rows but are used for fixed-display, pictograms can be placed on the screen. This function can largely control the rewrite frequencies of the bit-map data during smooth scrolling and reduce the software load of the MPU.

Bit Setting	COM Position	SL6-0 =00H	SL6-0 =01H	SL6-0 =02H	SL6-0 =04H	SL6-0 =07H	SL6-0 =08H		SL6-0 =7EH	SL6-0 =7FH
PS1-0	COM1	1st raster-row 2nd raster-row 3rd raster-row	2nd raster-row 3rd raster-row 4th raster-row	3rd raster-row 4th raster-row 5th raster-row	5th raster-row 6th raster-row 7th raster-row	8th raster-row 9th raster-row 10th raster-row	9th raster-row 10th raster-row 11th raster-row	• • • • • • • • •	127th raster-row 128th raster-row 1st raster-row	128th raster-row 1st raster-row 2nd raster-row
= "00"	COM120	118th raster-row 119th raster-row 120th raster-row	119th raster-row 120th raster-row 121 raster-row	120th raster-row 121st raster-row 122nd raster-row	122nd raster-row 123rd raster-row 124th raster-row	125th raster-row 126th raster-row 127th raster-row	126th raster-row 127th raster-row 128th raster-row	•••	116th raster-row 117th raster-row 118th raster-row	117th raster-row 118th raster-row 119th raster-row
PS1-0 = "01"	COM1	1st to 8th raster-row 1st raster-row 2nd raster-row 3rd raster-row	1st to 8th raster-row 2nd raster-row 3rd raster-row 4th raster-row	1st to 8th raster-row 3rd raster-row 4th raster-row 5th raster-row	1st to 8th raster-row 5th raster-row 6th raster-row 7th raster-row	1st to 8th raster-row 8th raster-row 9th raster-row 10th raster-row	1st to 8th raster-row 9th raster-row 10th raster-row 11th raster-row •	•••	1st to 8th raster-row 127th raster-row 128th raster-row 9th raster-row	1st to 8th raster-row 128th raster-row 9th raster-row 10th raster-row •
	COM120	110th raster-row 111th raster-row 112th raster-row	111th raster-row 112th raster-row 113th raster-row	112th raster-row 113th raster-row 114th raster-row	114th raster-row 115th raster-row 116th raster-row	117th raster-row 118th raster-row 119th raster-row	118th raster-row 119th raster-row 120th raster-row	•••	116th raster-row 117th raster-row 118th raster-row	117th raster-row 118th raster-row 119th raster-row
PS1-0 = "10"	COM1	1st to 16th raster-row 1st raster-row 2nd raster-row 3rd raster-row	1st to 16th raster-row 2nd raster-row 3rd raster-row 4th raster-row	1st to 16th raster-row 3rd raster-row 4th raster-row 5th raster-row	1st to 16th raster-row 5th raster-row 6th raster-row 7th raster-row	1st to 16th raster-row 8th raster-row 9th raster-row 10th raster-row	1st to 16th raster-row 9th raster-row 10th raster-row 11th raster-row	•••	1st to 16th raster-row 127th raster-row 128th raster-row 17th raster-row	1st to 16th raster-row 128th raster-row 17th raster-row 18th raster-row
	€ COM120	102nd raster-row 103rd raster-row 104th raster-row	103rd raster-row 104th raster-row 105th raster-row	104th raster-row 105th raster-row 106th raster-row	106th raster-row 107th raster-row 108th raster-row	109th raster-row 110th raster-row 111th raster-row	110th raster-row 111th raster-row 112nd raster-row	•••	116th raster-row 117th raster-row 118th raster-row	117th raster-row 118th raster-row 119th raster-row
PS1-0 = "11"	COM1	1st to 24th raster-row 1st raster-row 2nd raster-row 3rd raster-row	1st to 24th raster-row 2nd raster-row 3rd raster-row 4th raster-row	1st to 24th raster-row 3rd raster-row 4th raster-row 5th raster-row	1st to 24th raster-row 5th raster-row 6th raster-row 7th raster-row	1st to 24th raster-row 8th raster-row 9th raster-row 10th raster-row	1st to 24th raster-row 9th raster-row 10th raster-row 11th raster-row	•••	1st to 24th raster-row 127th raster-row 128th raster-row 25th raster-row	1st to 24th raster-row 128th raster-row 25th raster-row 26th raster-row
	COM120	94th raster-row 95th raster-row 96th raster-row	95th raster-row 96th raster-row 97th raster-row	96th raster-row 97th raster-row 98th raster-row	98th raster-row 99th raster-row 100th raster-row	101th raster-row 102th raster-row 103th raster-row	102th raster-row 103th raster-row 104nd raster-row	•••	116th raster-row 117th raster-row 118th raster-row	117th raster-row 118th raster-row 119th raster-row

Bit Setting and Display Lines

Notes: 1. The shadow raster-rows above are fixed-displayed. They do not depend on the setting of the SL6-0 bits.

2. The SL6-0 bits specify the next first scroll display raster-row of the fixed-displayed raster-rows.

Page: 45 Next: 46

Partial Smooth Scroll Display Examples

Data Setting to the CGRAM

CGRAM Address	CGRAM Data
000 to 07F	¥
080 to 0FF	HITACHI LTD Semi
100 to 17F	conductor testes N
180 to 1FF	Kodaira- <u>ur</u>
200 to 27F	Tokyo, [= =
280 to 2FF	Japan <u>Sakil</u>
300 to 37F	7187
380 to 3FF	TCI • 0/07_05_1111
400 to 47F	
480 to 4FF	
500 to 57F	
580 to 5FF	

UNITED RADIANT TECHNOLOGY CORP.

Page: 46 Next: 47

Example of Initial Screen in the Partial Smooth Scroll Mode

Example of Initial Screen in the Partial Smooth Scroll Mode (2)

URT UNITED RADIANT TECHNOLOGY CORP.

Page: 48 Next: 49

4.10 Double-height Display Function

The HD66750S can double the height of any desired area in units of raster-rows (dots). The doubleheight display is done by setting the DHE bit in the display control register to 1.

The start position of the double-height display is set by the DS6 to DS0 bits of the double-height display position register, and the double-height display starts at the (the setting value plus one)-th raster-row. The end position is set by the DE6 to DE0 bits of the double-height display position register, and the display ends at the (the setting value plus one)-th raster-row. Here, the end position of the double-height display must be after the start position, so set the register setting values so that DS6-0 \leq DE6-0. When the area specified to be doubled in height is an odd number of raster-rows, the

double-height display is done up to the (DE6-0 plus one)-th raster-row.

In vertical smooth scrolling, the double-height display position does not automatically move up or down.

Double-height Display (9^{th} to 40^{th} raster-rows)

UNITED RADIANT TECHNOLOGY CORP.

Page: 49 Next: 50

Reversed Display Function 4.11

The HD66750S can display graphics display sections by black-and-white reversal. Black-and-white reversal can be easily displayed when the REV bit in the display control register is set to 1.

Page: 50 Next: 51

4.12 Partial-display-on Function

The HD66750S can program the liquid crystal display drive duty ratio setting (NL3-0 bits), the liquid crystal display drive bias value selection (BS2-0 bits), the boost output level selection (BT1-0 bits), and the contrast adjustment (CT5-0 bits). For example, when the 128 x 120-dot screen is normally displayed with a 1/120 duty ratio, the HD66750S can selectively drive only the center of the screen or the top of the screen by combining these register functions and the centering display function (CN bit). This is called partial-display-on. Lowering the liquid crystal display drive duty ratio reduces the liquid crystal display drive voltage, thus reducing internal current consumption. This is suitable for a 16 raster-row display (1/16 duty ratio) of a calendar or time in the system-standby state, or the display of only graphics icons (pictograms) at the top of the screen, which enables continuous display with minimal current consumption. The non-displayed lines are constantly driven by the unselected level voltage, thus turning off the LCD for these lines.

In general, lowering the liquid crystal display drive duty ratio decreases the optimum liquid crystal display drive voltage and liquid crystal display drive bias value. This reduces output multiplying factors in the booster and greatly controls current consumption.

ltem	Normal Display	Partial-on Display (Lim	ited to Four-line Display)
LCD screen	128 x 120 dots	128 x 16 dots only on the center of the screen	128 x 16 dots only at the top of the screen
LCD drive position shift	Not necessary (CN = 0)	Necessary (CN = 1)	Not necessary (CN = 0)
LCD drive duty ratio	1/120 (NL3 to 0 = 1110)	1/16 (NL3 to 0 = 0001)	1/16 (NL3 to 0 = 0001)
LCD drive bias value (optimum)	1/11 (BS2 to 0 = 000)	1/5 (BS2 to 0 = 110)	1/5 (BS2 to 0 = 110)
LCD drive voltage*	13.5 V to 15.5 V (precisely adjustable using CT5 to 0)	4 V to 5 V (precisely adjustable using CT5 to 0)	4 V to 5 V (precisely adjustable using CT5 to 0)
Boosting output multiplying factor	Six times (BT1 to 0 = 10)	Two times (BT1 to 0 = 00)	Two times (BT1 to 0 = 00)
Frame frequency (fosc = 70 kHz)	68 Hz	68 Hz	68 Hz
Note: The LCD driv when the LCI	e voltage depends on the L D drive duty ratio is high, a l	CD materials used. Since ow duty ratio enables low-	the LCD drive voltage is hig power consumption.

Partial-display-on Function (1/120-duty Normal Drive)

UNITED RADIANT TECHNOLOGY CORP.

Page: 51 Next: 52

Partial-on display (Date and Time Indicated) (1)

Partial-on display (Date and Time Indicated) (2)

Page: 52 Next: 53

4.13 Sleep and Standby Function

Setting the sleep mode bit (SLP) to 1 puts the HD66750S in the sleep mode, where the device stops all internal display operations, thus reducing current consumption. Specifically, LCD operation is completely halted. Here, all the SEG (SEG1 to SEG128) and COM (COM1 to COM128) pins output the GND level, resulting in no display. If the AP1-0 bits in the power control register are set to 00 in the sleep mode, the LCD drive power supply can be turned off, reducing the total current consumption of the LCD module.

Comparison of Sleep Mode and Standby Mode

Function	Sleep Mode (SLP = 1)	Standby Mode (STB = 1)
LCD control	Turned off	Turned off
R-C oscillation circuit	Operates normally	Operation stopped

Setting the standby mode bit (STB) to 1 puts the HD66750S in the standby mode, where the device stops completely, halting all internal operations including the R-C oscillation circuit, thus further reducing current consumption compared to that in the sleep mode. Specifically, all the SEG (SEG1 to SEG128) and COM (COM1 to COM128) pins for the multiplexing drive output the GND level, resulting in no display. If the AP1-0 bits are set to 00 in the standby mode, the LCD drive power supply can be turned off.

During the standby mode, no instructions can be accepted other than the start-oscillation instruction. To cancel the standby mode, issue the start-oscillation instruction to stabilize R-C oscillation before setting the STB bit to 0.

Procedure for Setting and Canceling Standby Mode

United Radiant Technology corp.

5. Reliability

5.1 Environmental Test

Item No	Items	Items Content of Test		Applicable
				Standard
1	High temperature	Endurance test applying the high	80	
	storage	storage temperature for a long time.	200 Hrs	
2	Low temperature	Endurance test applying the low	-30	
	storage	storage temperature for a long time.	200Hrs	
3	High temperature	Endurance test applying the electric	70	
	operation	stress (Voltage & Current) and the	200Hrs	
		thermal stress to the element for a long	(*1)	
		time		
4	Low temperature	Endurance test applying the electric	-20	
	operation	stress under low temperature for a	200Hrs	
		long time.	(*1)	
5	High temperature /	Endurance test applying the high	40	
	humidity storage	temperature and high humidity storage	90% RH	
		for a long time.	200Hrs	
6	Temperature cycle	Endurance test applying the low and	10 Cycle.	
		high temperature cycles.		
		-30 + 80		
		(30min.) (30min.)		
		← → ↓		
		1 Cycle		
7	Vibration test	10 → 55 → 10 Hz,	15 minutes for each	
		within 1 minute amplitude 1.5mm.	direction(X,Y,Z)	
8	Drop test	Packed, 100CM free fall,		
		(6 sides, 1corner, 3edges)		

***1) : Driving condition for operation test:**

Power supply voltage for logic system = + 3.0V Power supply voltage for LCD system = Getting Optimum Contrast at 25

UNITED RADIANT TECHNOLOGY CORP.

Page: 54 Next: 55

6. HANDLING INSTRUCTION

PRECAUTION IN USE OF LCD

- Do not contact or scratch the front surface and the contact pads of an LCD panel with hard materials such as metal or glass or with one's nail.
- To clean the surface, wipe it gently with soft cloth dampened alcohol.
- Do not attempt to wiped off the contact pads.
- Keep LCD panels away from direct sunlight, also avoid storing them in a high-temperature&high humidity environment for a long period.
- Do not drive LCD panels by DC voltage.
- Do not expose LCD panels to organic solvent.
- Liquid in LCD is hazardous substance, any contacts with liquid crystal materials ,wash it off immediately with soap and water.
- The polarizer is easily damaged and should be handle with special care.Do^ont press or rub it with hard objects.

PRECAUTION FOR HANDLING LCM

- The LCD module contains a C-MOS LSI.To avoid damage to the LSI from static electricity generated while working,Ground your body,work/assembly areas and assembly equipment to protect the module against STATIC ELECTRICITY.
- Do not input any signal before power is turned on.
- Do not take LCM from it's packaging bag until it is assembled.
- Peel off the LCM protective film slowly since static electricity may be generated.
- Pay attention to the humidity of the work shop,50~60%RH is satisfactory.
- Use a non-leak iron for soldering LCM.
- Do not touch the display surface or connection terminals area with bare hands. Smudges on the display surface reduce the insulation between terminals.
- Cautions for soldering to LCM: Conditions for soldering I/O terminals: Temperature at iron tip: 280 ±10 Soldering time : 3~4 sec./ terminal. Type of solder : Eutectic solder(rosin flux filled).

PRECAUTION FOR STORING LCM

• To avoid degradation of the device, do not store the module under the con itions of direct sunlight, high temperature or high humidity. Keep the module in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperature below 0).

