Assembly Language Programming

for the

Control Data 6000 and Cyber Series

Ralph Grishman

Algorithmics
DEDICATION

This book is dedicated to A6 & A7, without which none of the results in this book could have been saved.
TABLE OF CONTENTS

Introduction

Chapter 1: The Basic Design of the 6000 and Cyber 70 Series

1.1 The Components of a Digital Computer System 1
1.2 Design Objectives and Speed 1
1.3 Central Processor Design 3
1.4 Peripheral Processors 6
1.5 Variations on a Theme 9
1.6 The Bold Step Forward 12

Chapter 2: Number Systems and Computer Arithmetic

2.1 The Binary Nature of Components 13
2.2 Binary and Binary Coded Decimal Representations 14
2.3 Arithmetic in the Binary System 15
2.4 The Octal Number System 23
2.5 Base Conversion Algorithms 26
2.6 Floating Point Numbers 29

Chapter 3: The Central Processor Instruction Set

3.1 A Summary of Central Processor Instructions 33
3.2 The Types of Central Processor Instructions 34
3.3 Instruction Formats 36
3.4 Branch Instructions 37
3.5 Writing Assembly Language Code 46
3.6 Subprogram Linkage and Parameter Transmissions 50
3.7 Set Instructions 54
3.8 Boolean Instructions 62
3.9 Integer Arithmetic: Addition and Subtraction 66
3.10 Floating Point Addition and Subtraction 68
3.11 Floating Point Multiplication 76
3.12 Floating Point Division 84
3.13 Arithmetic Exit 88
3.14 Character Manipulation 93
3.15 Integer Multiplication and Division 101
3.16 Compare and Move 112

Chapter 4: COMPASS

4.1 The Pseudo-Instructions 125
4.2 The Macro 125
4.3 Macro Parameters 128
INTRODUCTION

This text is intended to familiarize users with the design of the Control Data 6000 series, Cyber 70 series, and Cyber 170 series computer systems and to enable them to write central processor assembly language code. No knowledge of the hardware of this or any other computer is assumed; only a knowledge of the basics of FORTRAN, of running a FORTRAN program on a 6000 or Cyber machine, and of English are required.

In 1965, Control Data Corporation began delivery of its 6600 computer system, the most powerful computer delivered up to that time and still a very powerful machine by today’s standards. They subsequently added four systems to the 6000 series: three smaller systems, the 6200, 6400, and 6500, and one larger system, the 6700. For the 1970’s Control Data reintroduced these machines with a few small additions, as the Cyber 70 series, models 72, 73, and 74. In the mid 70’s, using newer technology, they came out with the Cyber 170 series, models 171, 172, 173, 174, and 175. Most recently, to start off the 80’s, they have added four models to the Cyber 170 series: the 720, 730, 750, and 760. All of the machines in these series are programmed identically. Thus, although I shall generally refer to the 6600, the information in this volume is applicable to all the above mentioned machines.

In 1969, Control Data regained the "most powerful computer delivered" title with its 7600 system, which is about five or six times faster than the 6600. To the general user the 7600 appears very similar to a 6000 series machine, although the overall system organization is quite different. Nearly all of the material to be presented here will also be applicable to the 7600, subsequently rechristened the Cyber 70 model 76, and to the Cyber 170 model 176, which has the same structure. We shall not consider any of the new features of the 7600 in any detail, however, unless they are connected with the development of the 6000 series or represent corrections of errors in the 6000 series design.

This text will try to be explanatory and not simply expository. That is, we won’t simply tell you that the structure of the computer is so and so, and the instructions are (1)... (2)..., etc., and "that’s how things are." Undeniably, it is important to know the instruction set backwards and forwards to write really good code, but there is something else you should understand: why the machine was built the way it was. Clearly it is impossible to show that 6600 is the best machine
configuration (it isn't, as IBM, Univac, and CDC's other competitors will hasten to point out), but you should at least see why it is a reasonably good design, and why some of the choices were made as they were.
CHAPTER 1

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

1.1 COMPONENTS OF A DIGITAL COMPUTER SYSTEM

Any real electronic data processing system has four functions: the input of instructions and data, the storage of instructions and data, the actual calculation using the data, and the output of results. The input and output (I-O) devices, such as the card reader and printer, which interface the computer with the user and the external environment, are generally grouped together; some devices, in fact, such as magnetic tape drives, serve for both the input and output of information.

The storage of data for the actual computing unit of the system is done in a high speed memory. In some of the earliest computers, the program of instructions was kept on loops of perforated tape, separate from the data, which were then read by the computer. Present computer speeds dictate, however, that the instructions for the computing unit be much more rapidly accessible, so the program of instructions is also stored in the high speed memory. Such a system is thus called a stored program computer. (Using ordinary paper tape to supply its instructions, a 6600 would have to gobble tape at about 30 miles per second!)

1.2 DESIGN OBJECTIVES AND SPEED

The CDC 6000 and 7000 series were designed for large scale, extremely high speed scientific data processing. They are among the most expensive computers ever sold, and were not designed for installation in your local grocery store to help with the bills.

In discussing the speed of these machines, we will never be talking in terms of seconds or milliseconds (thousandths of a second); our basic units will be the microsecond, one millionth
of a second (abbreviated ns). The 6600 is able to add two 18-digit integers in 300ns; to add two floating-point (i.e., FORTRAN type REAL) numbers in 400ns, with 14-place accuracy; and to multiply two floating-point numbers in 1000ns (=1 us). And, as if that weren't fast enough, the 6600 can do two multiplications, one integer addition, and one addition of floating numbers (and a few other things) simultaneously. Although just how it can keep all these things going concurrently is rather complicated, you should have some idea now of how fast the 6600's processing unit is. Going along at a typical 3 million calculations per second, a 6600, for example, should have no problem doing arithmetic accurately, faster than the entire population of the United States with paper and pencil. The 6600 obtains such speed from cleverly designed electronic circuitry, based upon electronic switches which can switch in 5ns (200,000,000 times a second).

The lower-numbered members of the 6000 series are of simpler design and correspondingly slower. The 6400, for example, takes 600ns to do an integer addition and 5.7us (5700ns) to do a floating-point multiply; also, it can only do one operation at a time. The 7600, using faster circuitry than the 6000 series, can do an integer add in 55ns and a floating-point multiply in 137.5ns.

The memory of a 6000 series machine is large and also quite fast. It has a maximum capacity of over 130,000 numbers. The time it takes the memory to deliver a particular number to the processing unit after the processing unit asks for it -- called the access time of the memory -- is 500ns. After a result is calculated in the processing unit and sent to the memory, it takes the memory 1000ns to store this result. To make things go even faster, the memory is divided up into 32 sections, called banks, and the memory unit is able to read numbers out of, or store numbers into, several banks, i.e., several parts of memory, at the same time. The memory of the 7600 is about four times faster: access time is 137.5ns, full cycle (store) time is 275ns.

The memory of the 6000 and 7000 series is made up of very large arrays of tiny ferrite (iron) magnetic cores (doughnut-shaped rings, a fraction of an inch in diameter), so it is often called core memory or core storage. Information is retained in core storage by magnetizing the individual cores; more about this later. Core storage is said to be random-access; that is, the time to access any information in the memory is the same, regardless of which piece of information is being accessed.
This is in contrast to magnetic tape, for example, where one can get at the information on the tape directly under the tape head (the part that reads and writes on the tape) right away, but one may have to rewind the tape for a minute or two to get what is on the beginning of the tape.

1.3 CENTRAL PROCESSOR DESIGN

Most of the machines of the early 1960's (the so-called second generation machines) were very much memory dependent. Typically, such a machine has a few transistor registers (electronic devices for holding numbers, as opposed to cores) for computation, but in an arithmetic operation one of the two operands comes from memory. For example, an add instruction would add a number stored in core memory to a number in one of the registers; a multiply instruction would multiply a number in memory by one in one of the registers. The advantage of this scheme is that you don't need many registers; in fact, if you want to be really cheap about it, you need only one. But there is one hitch: after the machine figures out that an instruction is an add instruction, it has to request the number from memory for the addition, and then wait until memory returns the needed number. The arithmetic unit can get the number out of the register very quickly, compared to memory speeds. The rest of the time, while the storage unit is getting out the information, the arithmetic section is waiting without anything to do.

In the "old days," when the arithmetic section was slow, this state of affairs wasn't too bad. It took about 1 to 2 us to access information from storage, but it took about 10us to do a multiply and 20us to do a divide, so the extra 1 or 2us were not so bad. Nonetheless, to save these couple of microseconds, the computer designers used something called look-ahead. In the simplest form of look-ahead, the computer accesses the next instruction from memory at the same time as it is executing the present instruction; this is known as instruction overlap. This technique enables the processing unit to figure out what the next instruction is, and possibly even to request the operand (number) for the next operation before the previous calculation is finished.

Some machines, such as IBM's Stretch (7030), tried to do even better by an intricate look-ahead scheme, which examines the
subsequent instructions and tries to determine what data will be needed. This scheme, however, has some difficulties: for example, one instruction may determine from which place in core storage the next instruction will take its operand. Furthermore, as long as there are only a few registers in which arithmetic is done, the chances are quite good that one instruction will require the result of a previous instruction as an operand. So, even if the machine could handle more instructions at the same time, overlap is limited; one instruction using a register could not begin executing until a previous one delivering its results to this register is finished. It turned out, as a result, that the look-ahead did not make the machine so much faster as it did make it more expensive.

In the 6600, any computer organization that forced the computer to wait for an operand to come from memory would be very wasteful, since the arithmetic section is much faster (multiply plus, other operations in 300ns). Knowing that one can get a number much faster out of a (transistor) register than from core storage, you might suggest that we build a machine with dozens or hundreds of registers. This solution, unfortunately, overlooks the shortage of that priceless ingredient, money: high-speed registers are about two orders of magnitude more expensive than core storage, at least. Aware of the rather limited market for billion-dollar computers, we have to limit ourselves to a few registers, and seek other solutions.

So the problem remains: how to avoid this situation without having a complicated look-ahead scheme which isn't very good anyway? The answer: have the programmer do the looking ahead; i.e., shortly before the instruction to perform an add, multiply, etc., let the programmer put an instruction which tells the processing unit to load the operand from memory. In this way, the operand is already sitting in one of the registers, and can be fetched by the arithmetic unit very quickly.

This method imposes another requirement: we have to have several registers, so that the arithmetic unit can use two of them for operands, put the result in a third, while at the same time operands can be loaded from memory for the next instruction into a fourth and fifth, and the result of the previous operation kept in a sixth until it is stored in memory. The 6600 has 8 such high-speed registers, called X registers.

The place in memory where a memory word (number) is stored is called a location; like positions in a one-dimensional array, locations in core are designated by numbers. The number of the location where a particular variable or other information is stored is called its address.
Now let's say that, in order to figure out the address of a word (number) we want to load from memory into a register, we have to do a calculation such as adding two numbers. On a typical second generation machine, we would have to (1) do the calculation in an arithmetic register, (2) store the result in a special register, called an index register, and (3) execute the load instruction, with a "flag" in the instruction which tells the machine to use the address in one of the index registers. For example, if we want to load the contents of successive locations (as in a DO loop with subscripted variables), we would first have to increment the index register, and then execute the load. If you think about it for a while, you will see that this is clearly a waste of time; why not have a special "index register" which automatically loads the word into an arithmetic register when it is set to an address? And, similarly, have "index registers" which, when set, store an arithmetic register at the location in memory specified by the contents of the index register. This is precisely what is done on the 6600. These special registers are called A registers, and there are 8 of them, paired off with X registers. When some A registers are set to an address, the contents of that location is loaded into the associated X register; when other A registers are set, the contents of the X register is stored at that location.

So far we have A and X registers; do we need any others? We haven't considered yet the usual case with index registers, in which we have a counter (such as a DO loop index) which is not equal to an address which we want stored or loaded during the loop. We wouldn't want to keep this count in an A register, since it would be wasteful to have the computer load or store a location which we don't want. We could, of course, put the index in an X register. Loop indices, however, are usually quite small (since a good-sized loop takes a while to do even a million times) whereas the arithmetic operands of the problem being computed in X registers are often much larger than a million, or require more than 6 significant figures. Since registers which hold more digits (bigger numbers) cost more, reasonably enough, it would be wasteful to allocate additional large X registers for small counters. As a result, for reasons of economy, we have, for indices and similar purposes, a set of special registers, smaller than the X registers, called B registers (or index registers). Of course, if a counter is required which is larger than can be put into a B register, one can always use an X register for it.
1.4 PERIPHERAL PROCESSORS

Thus we have a processing unit for our computer with A, B, and X registers for holding data, and hardware for executing all the instructions — doing the arithmetic operations. Now let's take the memory unit, this processing unit, and the required electronics for routing data back and forth, and wire them all together. What have we got? A most expensive pile of electronic junk (no reflection on the 6600).

What have we forgotten? Connections for the input and output of information. Unless the machine can input data and instructions and output results, it clearly will do us no good. And unless it can input and output fast enough, all the speed and power of the computer are for naught.

In the most elementary computers, input and output are taken care of by the same electronics that routes data between memory and the arithmetic unit. Thus, when an output instruction is executed, the computer requests a word (number) from memory as it would for a arithmetic operation, but instead of loading it into a register, it sends it out along one of the input-output lines, to a printer, for example. Alternately, it could take a word already in one of the registers and send it out on the same lines. The disadvantage of this scheme is that no arithmetic processing can occur during input or output, since there is only one path to and from memory, and only one control section to direct the flow of data.

The logical solution is to create several additional paths to and from memory, each with its own control section. The control section, with internal connections to memory and external connections to input-output lines, is known as a data channel. The main control unit, which executes the instructions in memory, can then instruct one data channel to read a certain section of memory and write it on magnetic tape, instruct another to transmit a second region of memory to the printer, and get a third to read information from punched cards and store it in memory. These commands are issued to the data channels when the main control section encounters an input or output instruction, just as it would instruct the arithmetic unit to do a multiply if a multiply instruction were encountered. Commands to the data channels may instruct them to do input-output, to pass on commands to an I-O device (e.g., tell a tape transport to rewind a tape), or to return to the main control section the status of any input-output requests previously made (successfully completed, error encountered, etc.).
The data channel concept was a very good one, and almost all second generation (early 1960's) computers used some variation of this scheme. In fact, with some further alterations, it is being used on most third generation (present-day) computers. To reduce the need for the program (i.e., the main control unit) to regularly interrogate the data channels for information, systems of interrupts have been devised for many computers. When an interrupt is on ("enabled") and a specified condition occurs (e.g., an error during input or output, the completion of input or output), the computer automatically transfers control to (starts executing) a program in memory designed to take care of the situation. For example, if a card gets stuck in the card reader, the computer might interrupt to a program which prints a line to the computer operator, "CARD READER JAMMED." Interrupt systems minimize the time that the computer has to spend checking up on the data channels.

This system is fine, especially for I-O devices that can transmit large quantities of information without much supervision, such as magnetic tape units. In contrast, suppose the computer was connected to 100 terminals -- units like typewriters, on which users can communicate with the computer. If "character-by-character response" were desired -- every time someone types in a character, the computer checks if any action by the computer is necessary -- the computer would be interrupted fairly often. Similarly, if a magnetic disk is used for storing programs to be executed, as on the 6600, and, as on the 6600, data is stored in small packets of 64 words, which can be read or written in 500us, there will be a need for frequent interrupts. Even if the data channel were capable of writing or reading several sectors (packets of 64 words) by itself it would be necessary to use the computer regularly to determine if the last needed sector had just been read, or where the next sector of a program is, or, if a search of part of the disk is being made, to examine the data as it is read in.

Thus it is clear that if several different I-O operations are going on simultaneously, the computer would have to be interrupted quite often. But many other computers, designed to handle considerable amounts of I-O, have adopted an interrupt scheme; why shouldn't the 6600? To answer this question we have to keep in mind several facts about the 6600: first, that it has a number of registers, and second, that it will usually be executing several instructions at the same time. Now, when an interrupt occurs, we would like to save the contents of all the registers, so that they will be unaltered when the interrupt program is over and control returns to the regular program. We can do this in two ways: first, we could use a different set of
registers for the interrupt program, and simply switch registers when an interrupt occurs; this is a very fast method, but a second large set of registers isn't cheap. As a result, a second, slower scheme was used: whenever the 6600 stops executing one program and starts executing the next, all the registers are automatically stored in memory and new values for the next program are loaded from memory. Since, at any moment, several instructions are executing, the computer has to wait until all the instructions are finished before it can begin storing the registers; as a result, it can take quite a few microseconds to change programs. If the 6600 were to interrupt every time some processing was needed for I-O operations, possibly 2,000 times a second or more if a lot of I-O is going on simultaneously, a sizeable fraction of the time of the main arithmetic unit would be spent simply exchanging back and forth between the regular and interrupt programs. So, no matter how fast the main processor could do the I-O chores, a significant amount of its time would be used up. In addition, the I-O processing is usually quite simple -- comparing numbers, searching for a particular item -- so during I-O processing the extraordinary power of the arithmetic unit would be largely wasted.

The logical solution is to provide each data channel with the ability to do some simple processing. The sophisticated data channels of the IBM 7000 series took a step in this direction: when a data channel finished one operation, it could read the next data channel command from memory without any intervention by the central processing unit (the main program). These data channels, however, still performed only I-O instructions.

The next step, as taken in the CDC 6000 series, is to give the "data channels" the ability to perform elementary arithmetic operations. These souped-up data channels can then take care of such processing as determining the next sector on the disk to read or write, searching for a certain item on the disk, or checking the input of 100 terminals letter-by-letter, and leave the central processor to do the work it was designed for: the more complex arithmetic processing for users' programs. These super data channels are called peripheral processors, because they act as an interface between the peripheral (input-output) equipment. Warning: in the 6600, "data channel" refers to the lines to I-O equipment, not unlike the data channels of the very simple computers mentioned earlier.

For several reasons, the peripheral processors have been given their own individual memories, rather than share in the main memory of the central processor, the central memory. One reason is that the "ideal" word size for the PP's (peripheral...
processors) is considerably smaller than that for the central processor; firstly, the "basic unit" in I-O is generally small, typically one number or character (e.g., one card column). Secondly, I-O devices are usually slow compared to computer speeds, so a PP can keep up with external equipment even if it works only a few digits at a time. And thirdly, they do not require a large word size for precision arithmetic, since they are designed to handle chiefly simple calculations. As a result, it would be wasteful to have a word size as large as that of the central processor. Furthermore, direct access of all PP's to central memory would require considerably more central memory electronics, and would complicate the control hardware of the PP's.

Thus we now have a machine configuration consisting of a high-speed central processor and a set of independent, less powerful peripheral processors for input and output. (Figure 1, page 11.) Because the PP's are all logically independent processors, running with their own programs, they can perform another function, in addition to doing I-O: they can act as system monitors. A system monitor supervises the running of the computer system: oversees input and output, determines which program will run on the central processor at any moment, and keeps records of all activities. In a 6600 system, there are normally 10 PP's; one or two can be assigned to supervisory functions, and the rest used for I-O operations.

1.5 VARIATIONS ON A THEME

The first machines in Control Data's 6000 series, the 6600 and the 6400, were originally offered only in the configuration shown in Figure 1. In order to expand and diversify its series, CDC soon offered two significant options: multiprocessors and extended core storage.

A multiprocessor configuration is simply an arrangement whereby two or more central processors are attached to central memory. Hooking together two 6400 processors yields a 6500, which ranks somewhere between a 6400 and a 6600 in computing power. Adding a 6400 central processor to a system with a 6600 yields a 6700, the top of the line. With either of these systems, the two CP's work on separate jobs in separate sections of central memory, so the
user need never be concerned that there is more than one CP in the system.

Extended core storage (ECS) is a larger, slower, and cheaper form of the core storage used for central memory; it is available in sizes up to 1 million words for the 6000 series and 1/2 million for the 7600. It provides a intermediate level of storage between high-speed central memory and the relatively slow-speed disk. It may be used to hold data or operating system tables which are not referenced often enough to justify a place in central memory, or programs which are executed very often (such as the FORTRAN compiler). Programs cannot be executed directly from extended core storage; they must first be moved to central memory.

ECS has been specifically designed to allow for the rapid transfer of large blocks of data from ECS to central memory and back. On 6000 series machines, the data rate is 10 million words per second; on the 7600, 36 million words per second. (To get some grasp of what 36 million words per second means, consider that the entire contents of the 2000-page Manhattan telephone directory could be transmitted in one-tenth of a second, or, more pertinent, that a FORTRAN compiler can be moved into central memory in about one-third of a millisecond.) A 6000 or 7000 series central processor can move a block of words to or from ECS with a single instruction; in addition, the 7600 CP can load a word into an X register from ECS and store into ECS from an X register. These particular instructions will not be discussed in detail in this volume; further information on them can be obtained from the reference manual for your machine.

In the usual ECS configuration, only the central processor, and not the peripheral processors, can access ECS. If the tables and principal programs of the operating system are kept in ECS, this means that a peripheral processor which wishes to change an entry in an operating system table (when a job starts or finishes executing, for example) has to request the central processor to make the change. This suggests, of course, that some system "bookkeeping" functions be performed by the central processor. Provisions have been made for this on the 6000 series machines through a special instruction (the "monitor exchange jump") which enables the central processor to switch back and forth between the user's program and the operating system's monitor program.

The 7600 system, which always includes ECS, was designed specifically to run with a central processor monitor. On one hand, a 7600 PP cannot do some things a 6600 PP could (such as start and stop the CP, or read any word in central memory) while,
on the other hand, the 7600 CP has some additional instructions to keep track of the PP's.
1.6 THE BOLD STEP FORWARD

As any marketing expert or homemaker will tell you, it just won't
do to keep on selling the same product year after year under the
same name. After a few years, good old SPQR becomes New Improved
SPQR with Miracle Whitener. This is especially important in the
computer business, where having the "newest and fastest" is a
status and selling point. So, to meet the challenge of the 70's,
CDC rechristened the 6000 and 7000 machines the Cyber 70 series.
The 6200 became a Cyber 70 model 72, the 6400 a model 73, the
660 a model 74, and the 7600 a model 76. The dual processor
systems, which formerly got the separate model designations 6500
and 6700, became options on the Cyber 70 models 72, 73, and 74.

The role of the New Miracle Whitener is played by the compare and
Move Unit, or CMU. This small addition to the central processor
was designed to make a computer originally intended for
scientific calculations more efficient in commercial and text-
processing applications. It is standard equipment on the Cyber
70 models 72 ad 73, and available as an option on the model 76.
We shall consider the capabilities of the CMU in detail at the
end of Chapter 3.

In the mid 70's, these machines were redesigned to take advantage
of newer technology. In place of individual transistors, they
used integrated circuits - small packages (less than an inch
long) containing dozens of transistors. In place of core memory,
they used integrated circuits that could store 1024 bits on each
"chip" (package). Although quite different internally, these
machines - the Cyber 170 models 171 through 175 - are programmed
identically to the earlier series. Further advances in
technology (such as memory circuits holding 4096 bits per chip)
led CDC in 1979 to introduce four more models in the Cyber 170
line - the 720, 730, 750, and 760. These too were "program
compatible" (identical from the programmer's viewpoint) with
earlier models.
CHAPTER 2

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

2.1 THE BINARY NATURE OF COMPUTERS

The question of the number system to be used by the computer in doing arithmetic is one of the basic questions in computer design. To those of you not familiar with the way arithmetic is done on computer, it may seem that "addition is addition, after all," regardless of the number system used. We shall presently see the error of such ideas.

It is a basic fact of computer design that virtually all digital electronic components built for computers are binary in nature. That is, every component can be in either of two states: a transistor, which is basically an electronic switch, can be either conducting (on) or nonconducting (off); a magnetic core, the tiny ring-shaped piece of ferrite used in core memories, can be magnetized in either a clockwise or counterclockwise direction; a light can be either on or off, etc. In each case, we associate one state with the digit 0 and one with the digit 1; the choice is usually quite arbitrary. Each digit in our representation may be either a 0 or a 1; hence it is called a binary digit, or bit. Thus each basic computer component represents one bit of information, a 0 or 1, yes or no, on or off datum. Larger amounts of information may be represented by using several bits together. Thus, a pair of binary digits may take on any of four possible values (00, 01, 10, and 11), a set of three bits may have any of 8 different values, and so forth. In general, n bits (which may be represented by n binary computer components) may have any of 2^n different values.
2.2 BINARY AND BINARY CODED DECIMAL REPRESENTATIONS

Using four bits, we can represent the first $2^{4} = 16$ numbers (0-15). There are many ways in which we can associate these 16 numbers with the 16 possible arrangements of four binary digits. One arrangement, however, is particularly desirable from both a logical and an electronic point of view; this arrangement is known as the binary number system. It uses the concept of place value in the same way as the decimal system, except that, instead of the place values going up in powers of ten, they go up in powers of two. Thus, just as:

\[
\begin{align*}
123 \text{ (base 10)} &= 1\times10^2 + 2\times10^1 + 3\times10^0 \\
 &= 1\times100 + 2\times10 + 3
\end{align*}
\]

so

\[
\begin{align*}
1101 \text{ (base 2)} &= 1\times2^3 + 1\times2^2 + 0\times2^1 + 1\times2^0 \\
 &= 1\times8 + 1\times4 + 0\times2 + 1
\end{align*}
\]

Thus:

\[
\begin{align*}
123 \text{ (base 10)} &= 1111011 \text{ (base 2)} \\
 &= 1\times64 + 1\times32 + 1\times16 + 1\times8 + 0\times4 + 1\times2 + 1
\end{align*}
\]

If one wants to store numbers, and not to do any arithmetic processing, the binary system has the one advantage that one need not memorize the value of each bit pattern, but, to convert binary to decimal, one need simply to add up the place values of all the "1" bits. Since, for everyday purposes, we would like to talk to the computer in decimal, it is important that we have a simple scheme for going back and forth between decimal and binary notation.

But there are other arrangements for storing numbers in memory which are even simpler to convert to decimal. Since four bits may take on any of 16 possible values, it is easy enough to use four bits to represent one decimal digit, 0-9. Again, there are many possible representations or codes for associating the decimal digits with the values of the four bits (16!/6!, which equals about 29,000,000,000 codes). However, there are again only a few desirable arrangements. One, in particular, codes each decimal digit in the binary system: 0 = 0000, 1 = 0001, 2 = 0010, 3 = 0011, ..., 9 = 1001.

In order to store a decimal number with more than one digit, we need merely set aside four bits for each decimal digit, and code
each decimal digit separately in its four bits. This technique is called binary coded decimal, or BCD. Thus in the computer memory we would store 123 as 0001 0010 0011, and 4978 as 0100 1001 0111 1000. This certainly is easier to convert to decimal than ordinary binary; in fact, after some practice, you could practically read the decimal when looking at the binary. Then why use the binary system at all? Simply because it is easier for the machine to do arithmetic in the binary system, as we shall see in the next section.

2.3 Arithmetic in the Binary System

To add two binary numbers is very simple; just as when adding in decimal, we do it bit by bit, starting at the right. Just as in decimal, 0+0 = 0, 1+0 = 1, 0+1 = 1; now 1+1 = 2 in decimal, but there is no 2 in binary. So in binary we write 1+1 = 10 or, if we are continuing the addition, 1+1 = 0 plus a 1 bit carry (since a 1 carried on to the next place is a 2 with respect to the present place). Now the only remaining problem is, what to do when adding up the next column, with a carry to take into account? It should be reasonably clear that, when there is a carry from the previous column, 0+0 = 1, 0+1 = 0 with a carry into the next column (i.e., \(\text{base } 2 \) = 2), 1+0 = 0 with a carry into the next column, and 1+1 = 1 with a carry into the next column (i.e., \(\text{base } 2 \) = 3). In case this isn't absolutely clear, some examples:

\[
\begin{align*}
\text{(carries} & \quad 11) \\
\text{addend } 1 & = 100110 \\
\text{addend } 2 & = +010011 \\
\text{sum} & = 111001
\end{align*}
\]

\[
\begin{align*}
\text{(carries} & \quad 111111) \\
\text{addend } 1 & = 1111111 \\
\text{addend } 2 & = 1 \\
\text{sum} & = 100000000
\end{align*}
\]

What makes this simple is that there are only eight possibilities, 0+0, 0+1, 1+0 and 1+1, with and without a carry, while in decimal arithmetic there are two hundred possibilities.
(two possible carries, 0 or 1, ten possible digits in each place
of each number). If we were to store the decimal digits as
binary numbers, as suggested above, we could add the individual
digits like binary numbers, but it would still be necessary to
check whether, in doing the addition, we created an illegal digit
(one greater than nine). For example, in

\[
\begin{array}{c}
23 = 0010 \\
+ 49 = + 0100 \\
\hline
1100
\end{array}
\]

the low-order digit is 12, so we have to change it to 2, and
propagate a carry into the ten's digit, so that the result is

\[
0111 0100 = 72.
\]

Regardless of what BCD code we used for the decimal digits, in
fact, we would have to do some checking after the addition for
illegal digits; as a result, it is simpler and faster to do
binary addition (both for you and the computer) than to do BCD
addition.

To learn binary multiplication is even easier: do the long
multiplication just as you would decimal numbers, and then add
the partial products up as you just learned to add binary
numbers; for example,

\[
\begin{array}{c}
 \\
* \\
\hline
1000110 \\
1000110 \\
\hline
1011011110
\end{array}
\]

another example

\[
\begin{array}{c}
11101110 \\
* 11161 \\
\hline
11101110 \\
11101110 \\
11101110C \\
11101110 \\
\hline
1101011111C110
\end{array}
\]
If you get confused keeping track of all the carries in binary, do as the computer does: as you multiply, keep a running total of the partial products so you only have to add two numbers together at a time. In fact, if you take a careful look at what you have done, you will see that the computer doesn't really have to multiply in the sense in which you had to learn to multiply in decimal. All it does is shift one of the numbers to the left, one binary place at a time, and check whether the corresponding bit in the other number (starting with the rightmost bit and going left) is 1; if it is, add the first number into the subtotal (in its present, shifted, position) before continuing with the shifting.

This makes binary multiplication really easy for the computer. In comparison, to do multiplication in decimal, it would have to learn a 10*10 multiplication table. Some machines which do decimal arithmetic, such as the IBM 1620 computer, store addition and multiplication tables in memory, and look them up every time they do an arithmetic operation; that is, to say the least, a slow process.

At this point we have significant information for a first decision concerning the number system for our computer: binary or decimal (BCD). It should be clear by now that if a lot of arithmetic will be done with the numbers in memory, it is simpler (in terms of computer electronics) and faster to use the binary system. On the other hand, for some business uses where an enormous amount of data is read in and out, many of the numbers are never used in arithmetic operations (who ever heard of multiplying a Social Security number?), and only some simple arithmetic is performed with the rest, decimal arithmetic may be best in order to save the time converting back and forth between decimal and binary. The CDC 6600, however, was made essentially for scientific uses, where a lot of arithmetic is done (in comparison with the amount of I-O), so the choice is clear: use the binary number representation.

Having covered addition and multiplication, let us complete the sequence with a discussion of subtraction and division. Just as for addition -- binary or decimal -- we need the concept of a carry, for subtraction we need the concept of a "borrow." The rules for doing a subtraction are quite simple: 0-0 = 0, 1-0 = 1, 1-1 = 0, and 0-1 = 1 with a borrow from the column on the left (in effect, borrowing 2, just as you borrow 10 in decimal). Borrowing from a 1 simply makes it a 0, while borrowing from a 0 makes it a 1 and requires still another borrow from the next column to the left (compare with the process involved in the subtraction, in decimal, 100 - 1). Some examples to make this
In case you might have been confused by all those borrows, I have some good news for you: we are about to show that it is really unnecessary to learn to subtract at all. You may have heard this line somewhere before -- when you were told that you really didn't have to subtract, you just added a negative number. Well, this information really won't help you too much (unless you like to use nine's complements), since to add a negative you probably go through the motions of a subtraction anyway. But in a computer, where the electronics for doing a subtraction as we did above would require quite a few electronic components, we would much prefer to use some sly trick which enabled us to get away with having only an adder (and not a subtracter). After all, electronic circuits don't grow on trees.

So, we are going to investigate the possibility of adding negative numbers, instead of subtracting, in binary. Our first problem is how to get a negative number, but that isn't very difficult: simply subtract a number from a smaller number, say 24 - 32.

```
  011000
-  100000
------
?11000
```

What now? Well, there are at least two reasonable possibilities. Firstly, we could, if we were subtracting numbers with only six (or fewer) bits, agree that we are allowed a free borrow from the next column (sort of an imagined 1 bit in the next column of the upper number); in effect, we disregard any borrow into the last column. Then, where the "?" is, we would simply put a one:

```
24 - 32 = 011000
- 100000
------
111000 = -8
```

So -8 = 111000 for six-bit numbers. Alternately, we could agree to borrow from the bottom (rightmost) column; in this case things are a little bit more complicated because we have to continue borrowing up to the fourth column:
011000
- 100000

111000
- 1 borrow

110111

Now, you might dare to ask, why in the world should we take the borrow from the low-order digit? Take a careful look at our second result: \(-8 = 110111\) (for six-bit numbers), and recall that \(8 = 001000\); now do you notice anything? Wherever there is a one in the binary representation of the positive number, there is a zero in the binary of the negative number, and vice versa; this is called the one’s complement of the number. The other representation of the negative number, the first one calculated, is called the two’s complement; it is equal to the one’s complement plus one (since to form the two’s complement we don’t borrow 1 from the low-order (rightmost) bit, as we did for the one’s complement).

Let’s assume for the moment that whenever we do a subtraction with end around borrow (borrow from the low bit) and get a negative number, it will be the one’s complement of the positive number (we will prove this shortly). Then we have a simple rule for subtraction: just add the one’s complement of the number. For this method to work, however, we have to keep one thing in mind: when we borrowed for the high-order (leftmost) bit, we took a 1 from the low-order bit, so when we have a carry from the high-order bit, we have to carry it around to the low-order bit. This, logically enough, is called an end around carry. Some examples:

\[
32 - 24 = 00100000 - 00011000 = 00100000 - 11100111 = 00001111 + 1 \text{ <-- end around carry}
\]

\[
00010000 = 8!
\]

\[
28 - 1 = 00011100 - 00000001 = 00011100 - 11111110 = 00011010 + 1 \text{ <-- end around carry}
\]

\[
00011011 = 27
\]
NUMBER SYSTEMS AND COMPUTER ARITHMETIC

\[
13 - 0 = \begin{array}{c}
00001101 \\
- 00000000 \\
\hline
00001101
\end{array}
+ 11111111
\hline
00001100
\hline
\text{--- end around carry} \hline
00001101 = 13
\]

Notice that in our third example we have found another zero (the so-called \(-0 = 11111111\)), in other words, another number which when added to any number \(N\) gives the same number \(N\). Now, in order to find the negative of a number, one method is to subtract that number from zero; so, we can subtract the number from \(-0\) just as well. We will thus get the one’s complement of the number, since subtracting one from one gives zero, and zero from one gives one:

\[
-0 - 27 = \begin{array}{c}
11111111 \\
- 00011011 \\
\hline
11100100 \end{array} = -27
\]

Thus, we have "proven" that if we use end around borrows and carries (one’s complement arithmetic), the negative of a number is the one’s complement of the number.

Now recall, if you will, why we started on this examination of negative numbers: we wanted to see if it is possible to perform subtraction on the computer using addition. We have found that one can do subtraction by adding the complement of the number, and that there are two convenient complements: one of them, the one’s complement, can be calculated by simply putting ones where there are zeros and vice versa. The other, the two’s complement, is found by adding one to the one’s complement. The one’s complement is clearly simpler to calculate (it requires only one operation) and largely for this reason one’s complement arithmetic was selected for the 6600.

Having now reached this decision, some words of caution are in order. When we wrote down numbers and their complements above, we were usually careful to specify, "for eight-bit numbers," etc. Why we had to do this should be evident by now. If we have a five-bit number, say 27 (base 10) = 11011 (base 2), and want to represent it on a register which has six bits (six binary electronic components), we would write 011011; if we had an eight-bit register, we would write 00011011. In other words, if there are more bits than we need for the number, we do the
obvious thing, and fill the register with zeros. But consider now putting 27, the one's complement of 27, in the register; for the six-bit register, we have the complement of 011011, which is 101001, while for the eight-bit register we have the complement of 00011011, or 11000100. That is, when we put a negative number into a larger register we have to fill the register with ones, not zeros!

Complement arithmetic brings up one other problem. Let's say we have a six-bit register, and I tell you that it contains 101101. What number is in that register? You could say either 45 or -18 (in one's complement), but you couldn't tell me which of those two. So we have to make a convention about when we consider a register to contain a positive or negative number. Recall now that if the register is sufficiently large, a positive number will have the most significant (leftmost) bit equal to zero, while a negative number will have it equal to one (since for positive numbers we fill out the register with zeros, for negative numbers with ones). We therefore will adopt the convention that if the most significant bit is zero, the number is positive; if the most significant bit is one, the number is negative. As a consequence of this convention, we call the most significant bit the sign bit, and refer to the aforementioned process of filling a register with zeros (if sign bit = 0) or ones (if sign bit = 1) as sign extension.

A register of n bits can take on 2^n values, which we originally associated with the positive integers 0 through 2^{n-1}. With our new convention, we are limited to n-1 bits (the high bit must be zero), and so to positive numbers 0 through $2^{n-1} - 1$. In recompense for this loss, we obtain the ability to represent the negative numbers -0 through $-(2^{n-1} - 1)$, so that all in all the register can still take on 2^n values. In doing integer arithmetic, one must always be careful to avoid exceeding the allowed range of positive or negative numbers; for example, in the addition in a six-bit register

\[
\begin{array}{c}
24 + 24 = \\
+ 011000 \\
\hline
110000 = -001111 = -15!
\end{array}
\]

The sum is incorrect because we have exceeded the limit $2^5 - 1 = 31$. Such an error is termed overflow because a carry spills over into the sign bit when the number exceeds the prescribed range.
In case you are confused by now about integer arithmetic, there is one additional point; we could either store a negative number in the computer as the complement of the positive number, or as the positive number (the magnitude) with a special bit set to indicate that it is a negative number. The latter is called a sign and magnitude representation, and the special bit is called the sign bit, since (like the sign bit discussed above) it is zero for positive numbers, one for negative numbers. For example, −27 would be

one's complement: 11100100
sign and magnitude: 1 0011011

sign and magnitude = 27

If we stored the numbers in one's complement, we could add them directly in the arithmetic unit; if we stored them in sign and magnitude, it would be necessary to convert the numbers to complement form before adding them. On the other hand, an advantage of storing numbers as sign and magnitude is that they are easier to read if you are looking directly at the 0's and 1's out of the machine (you don't have to complement the number in your head before figuring out what it is). But most people generally don't read numbers directly out of the machine's memory; they have the computer convert them back to decimal. As a result, the method simpler for the arithmetic section was selected for the 6600: storing numbers in one's complement.

We have finally finished addition, multiplication, and subtraction, and all the vagaries of one's complement. Division in binary is essentially the same process as in decimal, but is somewhat simplified because there are only two possibilities for each digit. The actual method for long division is identical to that for decimal; the only difference is that you have to remember to subtract in binary:

\[
\begin{array}{c}
00000110 = 6 \\
7/42 = 00000111 / 00101010 \\
\hline
111 \\
111 \\
111
\end{array}
\]

You may notice that the only operations involved are shifting the divisor right one bit at a time and subtracting (or, alternately, adding the complement, 1111000). In the division process, the
divisor starts out shifted all the way to the left, and is repeatedly shifted right one binary place; each time the divisor is shifted, the arithmetic unit checks if the divisor is less than the dividend (as you do when performing the division by hand); if it is, the unit puts a one in the quotient and subtracts the divisor from the remaining dividend; in either case, it then continues shifting the divisor to the right.

Thus we have finally covered the four basic operations of binary arithmetic; if you don't have them quite straight yet, you will probably be heartened to know that you will probably never do a problem in binary arithmetic while you are programming (unless you feel a sudden urge to do so).

2.4 THE OCTAL NUMBER SYSTEM

The disadvantages of the binary system are obvious: it takes long enough just to write out a good-sized number (like 4100 (base 10) = 1000000000100), never mind doing a long multiplication or division. In designing the computer, we don't have to worry about this, but for ourselves we would like a more convenient notation. We could use decimal, of course, but this has one problem: if we want to examine the individual bits, we may have a hard time figuring out from the decimal value of a (binary) register whether a particular bit is a 0 or a 1 (quick, what is the thirteenth-from-low-order bit of 3,628,422,301?). The only way to insure that we can convert easily from the machine representation to our representation is to have one digit in our number system correspond to an integral number of bits. For example, in a machine using BCD for storing numbers, it is trivial to go from the machine representation to decimal, since one decimal digit corresponds to four bits. We can accomplish the same thing for a machine using the binary system by having a number system whose base is a power of two: base four (two bits to a digit in base four), base eight (three bits to a digit in base eight), base 16 (four bits to a digit in base 16), etc. Since we want to minimize the number of digits we have to write, bases eight and 16 are preferred to base four. You might think that, from this point of view, we should use base 32 or even 64. But for base 32, we need 32 different digits; knowing already 10 (i.e., 0 - 9), we would have to invent and memorize the values of 22 others, not a very pleasant thought at a time when we are trying to make work easier for ourselves. So the normal number
NUMBER SYSTEMS AND COMPUTER ARITHMETIC

Systems used are base eight -- octal -- and base 16 -- hexadecimal. For octal, we need eight digits: 0 - 7, logically enough; for hexadecimal, we take the ten decimal digits 0 - 9 and add six letters A - F to make 16.

On the 6600, the basic bit groupings are 6, 12, 15 and 30 bits -- all multiples of three -- so the octal system, which associates one digit with each three bits, was selected. To convert binary to octal and vice versa, you first have to learn the binary equivalents of the octal digits:

<table>
<thead>
<tr>
<th>Octal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>

Then, to convert binary to octal, simply break up into groups of three and convert group by group; for example,

1 101 010 (base 2) = 1 5 2 (base 8)

In case the basis for this procedure isn't obvious, study the following:

\[1 \times 2^{6} - 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}\]

\[= 1 \times 2^{6} + (1 \times 2^{2} + 0 \times 2^{1} + 1) \times 2^{3} + (0 \times 2^{2} + 1 \times 2^{1} + 0) \times 2^{0}\]

\[= 1 \times 8^{2} + (5) \times 8^{1} + (2) \times 8^{0}\]

\[= 1 5 2 \text{ (base 8)}\]

Converting from octal to binary is just as simple:

\[3 7 4 2 \text{ (base 8)}\]

\[= 011 111 100 010 \text{ (base 2)}\]

With a little practice this should become as automatic as breathing.

24
Converting from octal to decimal is a procedure analogous to converting binary to decimal.

\[
3 \quad 7 \quad 4 \quad 2 \quad \text{(base 8)}
\]

\[
= 3 \times 8^3 + 7 \times 8^2 + 4 \times 8^1 + 2
\]

\[
= 3 \times 512 + 7 \times 64 + 4 \times 8 + 2
\]

\[
= 2018
\]

If you remember the powers of two (useful information in any case when you are programming) this is simple enough. But, as we shall see in the next section, there are techniques which absolve you from having to remember \(2^239\) if you want to convert 37421654513007(base8).

Doing arithmetic in octal is similar to decimal, except that you have to cut two fingers off before counting. When you add, you have to remember to propagate a carry and start counting again at eight, when subtracting, to borrow eight, not ten:

\[
\begin{align*}
70320 \\
+ 165432 \\
\hline
255752
\end{align*}
\]

\[
\begin{align*}
\phantom{\text{70320}} & \quad \text{165432} \\
\hline
\phantom{\text{70320}} & \quad 255752
\end{align*}
\]

\[
\begin{align*}
42731 \\
- 25616 \\
\hline
15113
\end{align*}
\]

Multiplying in octal can be messy unless you memorize the multiplication table, though if that gives you a hard time, you can multiply each pair of octal digits in decimal and then convert to octal (e.g., \(7\text{(base 8)} \times 7\text{(base 8)} = 49\text{(base 10)} = 61\text{(base 8)})). Since that is, to say the least, a slow procedure, you will be happy to hear that you won't often have to do a multiplication like this:

\[
\begin{align*}
1542 \\
\times 317 \\
\hline
13656 \\
1542 \\
5046 \\
\hline
536076
\end{align*}
\]
Once you have octal multiplication and subtraction down pat, octal division is simple — the same procedure as long division in decimal:

\[
\begin{array}{c|c}
317 & 536076 \\
317 & \\
2170 & \\
2013 & 1557 \\
& 1474 \\
& 636 \\
& 636 \\
& 000
\end{array}
\]

2.5 BASE CONVERSION ALGORITHMS

A base conversion algorithm is a technique for converting numbers in one base to numbers in another. We have already discussed a few; for example, from binary to decimal:

\[
110101 (\text{base } 2) = 1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = \quad 53 \text{ (base 10)}
\]

Now watch carefully

\[
110101 (\text{base } 2) = 1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = (1*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0)2^1 + 1
\]
Thus converting binary to decimal can be reduced to multiplying by two and adding the next bit to the right, repeating this process till we run out of bits; this may be diagrammed:

\[
\begin{align*}
1 & \\
(1*2 + 1) & \\
6 & \\
(6*2 + 1) & \\
26 & \\
(26*2 + 1) & \\
53 & \\
\end{align*}
\]

Converting from octal to decimal is the same, except we multiply by eight:

\[
\begin{align*}
3 & \\
(3*8 + 7) & \\
31 & \\
(31*8 + 4) & \\
252 & \\
(252*8 + 2) & \\
2018 & \\
\end{align*}
\]

Thus, we have an algorithm for converting from binary and octal to decimal that doesn't require us to memorize tables of powers of two.

To go the other way -- to convert decimal to octal -- we can simply turn the tables and multiply by 12 (base 8), (= 10 (base 10)) and do all the arithmetic in octal:
NUMBER SYSTEMS AND COMPUTER ARITHMETIC

\[
\begin{array}{c}
 2 \\
 \downarrow \\
 0 \\
 \downarrow \\
 1 \\
 \downarrow \\
 8 \\
 \downarrow \\
 (2*12 + 0) \\
 \downarrow \\
 (24*12 + 1) \\
 \downarrow \\
 (311*12 + 10) \\
 \downarrow \\
 3742
\end{array}
\]

But -- since most people prefer not to multiply in octal -- there is another conversion technique we can use, involving repeated division. Consider a three digit number, with digits \(d(3)d(2)d(1)\). Its value, in decimal, is

\[d(3)\times8*2 + d(2)\times8*1 + d(1)\]

If we now divide in decimal by 8, we get quotient \(d(3)\times8*1 + d(2)\), remainder \(d(1)\) (since \(d(1)\) is less than eight); if we divide the quotient again by eight, we get \(d(3)\), remainder \(d(2)\). Thus, by repeated division by 8, we will get the octal digits as a series of remainders. To convert 2018 to octal,

\[
\begin{align*}
2018/8 &= 252, \text{ remainder} \ 2 \\
252/8 &= 31, \text{ remainder} \ 4 \\
31/8 &= 3, \text{ remainder} \ 7 \\
3/8 &= 0, \text{ remainder} \ 3
\end{align*}
\]

so again, (reading the remainders from bottom to top), 2018 (base 10) = 3742 (base 8). For binary, we use the same procedure except we divide by two. To convert 53 to binary,

\[
\begin{align*}
53/2 &= 26, \text{ remainder} \ 1 \\
26/2 &= 13, \text{ remainder} \ 0 \\
13/2 &= 6, \text{ remainder} \ 1 \\
6/2 &= 3, \text{ remainder} \ 0 \\
3/2 &= 1, \text{ remainder} \ 1 \\
1/2 &= 0, \text{ remainder} \ 1
\end{align*}
\]
so (reading up) 53 (base 10) = 110101 (base 2). We will have more to say about conversion algorithms quite a bit later, when we will be writing programs to do the conversions.

2.6 FLOATING POINT NUMBERS

So far, in discussing the representation of numbers in the computer, we have considered only integers. But, as you know from FORTRAN, we have two basic modes for representing numbers: integer and real. Real numbers are needed for numbers much larger than or smaller than one, and numbers with fractional parts. In writing very large or very small numbers in FORTRAN we use scientific notation, E format, such as 3.E+30 or 7.1E-32 in order to avoid such space-consuming monstrosities as 3000 000 000 000 000 000 000 000 or 0.000 000 000 000 000 000 000 000 000 071. In storing the numbers in the machine, we use a similar technique: we convert the number to a reasonable-sized integer multiplied by a power of two; for example, the binary number 101 000 000 000 000 000 000 000 000 071, we can write as 101*2**11011.

Now what about numbers smaller than one? Just as we represent such numbers in decimal with decimal fractions, we can represent them in binary by binary fractions; as places to the right of a decimal point represent 1/10, 1/100, 1/1000, etc., the places to the right of a binary point (which looks just like a decimal point) represent 1/2, 1/4, 1/8, and so forth. Thus

\[
0.001 \text{ (base 2)} = 0 \times \frac{1}{2} + 0 \times \frac{1}{4} + 1 \times \frac{1}{8} = \frac{1}{8} = 0.125 \text{ (base 10)}
\]

and

\[
1.0101 \text{ (base 2)} = 1 + 0 \times \frac{1}{2} + 1 \times \frac{1}{4} + 0 \times \frac{1}{8} + 1 \times \frac{1}{16} = 1 + \frac{5}{16} = 1.3125 \text{ (base 10)}
\]
NUMBER SYSTEMS AND COMPUTER ARITHMETIC

Without describing the conversion algorithm—which is quite similar to those previously discussed—it is clear that given any decimal fraction we can convert to binary. Once this is done, it is trivial to get into our form of integer times exponent:

\[
1.3125 \text{ (base 10)} \\
= 1.0101 \text{ (base 2)} \\
= 10101*2^{(-100)}
\]

When we store the number, of course, we will just store the integer coefficient and exponent, since the base of the exponent (2) is understood. In the 6600, memory words and X registers have 60 bits, to be allocated between the coefficient and exponent. The low 48 bits are used for the coefficient, the next 11 for the exponent, and the high-order bit has the sign of the number (i.e., of the coefficient):

<table>
<thead>
<tr>
<th>SIGN</th>
<th>EXPONENT</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(11)</td>
<td>(48)</td>
</tr>
</tbody>
</table>

The 11 exponent bits contain a biased exponent; that is, 2000 (base 8) is added to the true exponent before it is put into the floating-point (real) number. Thus, a true exponent of 0 appears as 2000 (base 8), and a true exponent of 1777 (base 8) becomes 3777 (base 8), the largest number that will fit in all 11 bits.

However, an exponent of -1 becomes 1776 (base 8), and not 1777 (base 8) (the exponent 1777 (base 8) has a special significance, which will be discussed later). In other words, when we add the bias, 2000 (base 8), to \(-1 = 3776\) (base 8) (11-bit one’s complement), we ignore the carry out and keep only the low 11 bits.

\[
\begin{align*}
2000 \text{ (base 8)} & = \text{1000000000000} \\
3776 \text{ (base 8)} & = \text{11111111110} \\
\hline
1011111111110 & \\
\text{keep 11 bits} \\
& = \text{1776} \text{ (base 8)}
\end{align*}
\]

In this way, the smallest exponent possible, -1777 (base 8) becomes (+2000 (base 8) + 2000 (base 8)) 0000 (base 8).

30
At this point you should be able to figure out that

\[
0.5 = 1776 \quad 000000000000000 \quad 01 \quad \text{(base 8)}
\]

\[
16. = 2000 \quad 000000000000000 \quad 20 \quad \text{(base 8)}
\]

or should

\[
16. = 2004 \quad 000000000000000 \quad 01 \quad \text{(base 8)}
\]

or perhaps

\[
16. = 1724 \quad 400000000000000 \quad 00 \quad \text{(base 8)}
\]

Since all these representations have the same value (doubling the coefficient and subtracting one from the exponent leaves the values unchanged), which should we choose? The answer in general requires some understanding of the floating point arithmetic unit of the central processor; however, in the cases where it is not possible to represent the number exactly in floating point format, the preferred form is clear. For example, \(1/3\) in binary is a repeating fraction,

\[
0.010101010101010 \ldots \quad \text{(base 2)}
\]

\[
= 0.2525252525252525 \ldots \quad \text{(base 8)}
\]

just as it is in decimal \((0.333\ldots)\), so we cannot represent it exactly using any combination of coefficient and exponent. However, the more digits we include in the coefficient, the more accurate will be our floating point number:

\[
1774 \quad 0000000000000002 \quad \text{(base 8)}
\]

is only very approximate \((1/4 = 0.25)\)

\[
1771 \quad 0000000000000025 \quad \text{(base 8)}
\]

is better \((= 0.328)\), and

\[
1716 \quad 525252525252525 \quad \text{(base 8)}
\]

is accurate to one part in \(2^{*48}\) (since the coefficient has 48 bits); the pattern has changed to a leading 5 because we shifted 46 bits (not a multiple of 3) in order to get the most significant bit into the high order position of the coefficient. This form, in which the coefficient is shifted so that the most
significant bit occupies bit 47, the high order bit of the coefficient, is the standard form for floating point numbers in the 6600. The process of converting a number to this form is called normalization, and a number in this form is said to be normalized. When normalized, our earlier examples, 0.5 and 16, become

\[
\begin{align*}
0.5 &= 1717 \\ 16. &= 1724
\end{align*}
\]

4000000000000 (base 8) 4000000000000 (base 8)

Our final problem with floating point numbers is how to represent negative numbers. The method used is very simple: the representation of a negative number is the one's complement of the positive number of the same magnitude. Everything is complemented, exponent and coefficient:

\[
\begin{align*}
-0.5 &= 6060 \\ -16 &= 6053
\end{align*}
\]

3777777777777777 (base 8) 3777777777777777 (base 8)

Note that, since we made sure bit 59 (the high order bit) is zero for positive numbers, it will be one for negative numbers; thus we have the same positive/negative rule we had for integers. Also, since the "normalized bit" (bit 47) is one for normalized positive numbers it will be zero for normalized negative numbers.
CHAPTER 3

CENTRAL PROCESSOR INSTRUCTION SET

3.1 A SUMMARY OF CENTRAL PROCESSOR HARDWARE

In the past two chapters we have gradually unfolded the basic facts concerning the central processor. Now, before we go on to the instruction set of the central processor, let us review and complete the information necessary for an understanding of these instructions.

The standard central memory for the 6600 has $2^{17} = 131,072$ words; $2^{15} = 32,768$ and $2^{16} = 65,536$ word memories are optionally available if you don't happen to have the extra half million dollars or so on hand for the larger memory (the 7600 comes only with a 32 or 65 thousand-word central memory). Having the number of words be a power of two simplifies central memory organization somewhat. As mentioned earlier, each word has 60 bits, relatively large as machine word sizes go. This size permits a floating point number with about 15 decimal places accuracy, sufficient for virtually all applications. A large word also permits several instructions to be put into one word (as we shall soon see), so that the number of memory accesses required to get out instructions is reduced. Finally, 60 is a multiple of 2, 3, 4, 5, and 6, so that several different subdivisions of the word may be conveniently made.

The central processor has three types of registers: A, B, and X registers; there are eight of each type, identified as A0 through A7, B0 through B7, X0 through X7. The X registers are used to hold the operands and results in arithmetic operations; since words are loaded from memory into X registers, and stored into memory from X registers, X registers also have 60 bits.

The A registers are special registers involved in the loading and storing of operands. When an address is put into one of A1-A5, the word at that address is loaded into the associated X register (X1-X5); when an address is put into A6 or A7, the contents of X6 or X7 are stored at that location. The A0 and X0 registers have
no connection with memory, and may be used for holding intermediate results.

The A registers are 18 bits, and thus can accommodate 2^{18} addresses — a 2^{18} word memory had been envisioned for 6000 series computers. Eighteen is also a convenient size, being a multiple of 2, 3, and 6; eighteen-bit quantities appear in many of the central processor instructions.

The B registers are used for holding small numbers, such as loop indices. In order that the arithmetic hardware can be used for B and A registers, B registers also have 18 bits. Because the constant zero is needed so often, register B0 is permanently set to zero.

3.2 THE TYPES OF CENTRAL PROCESSOR INSTRUCTIONS

Every central processor program is a series of CP (central processor) instructions, each of which accomplishes a small step in the overall calculation. In selecting the instructions to be recognized by the CP, we seek a set which enables us to write efficient programs for a large variety of problems — programs which run quickly and do not take up too much space. At the same time, we must resist the urge to include every useful instruction we can think of, lest we (after installing the hardware to recognize all these instructions) re-enter the billion-dollar computer market. In other words, we have to find a relatively small set of versatile instructions with which, in combination, we can perform all the different types of operations efficiently. So, as a first step, let us see what basic types of instructions we would want to have.

First we need the arithmetic operations: addition, subtraction, multiplication, and division. Although we could simulate subtraction, multiplication, and division with short programs using only addition and one's complementing, this would be very slow; hence, for high speed scientific computing, hardware subtraction, multiplication, and division are essential. The computer must be able to do all four operations on both integer and floating point operands. In all these instructions, the two operands will be taken from X registers and the result put in an X register.

34
CENTRAL PROCESSOR INSTRUCTION SET

In addition to the arithmetic operations, we will need the Boolean or logical operations: and, or, not. These are required for such purposes as masking and evaluating logical expressions (the .AND., .OR., .NOT., operations in FORTRAN). These instructions will also take operands from and put the result in an X register. In conjunction with the Boolean instructions, we will need shift instructions (for which there is no explicit analogue in FORTRAN), which enable the programmer to shift the position of a bit pattern in a register; for example, to change

\[
\begin{array}{cccc}
63000 & 00000 & 00000 & 00000 \\
00000 & 63000 & 00000 & 00000 \\
00000 & 00000 & 00000 & 00063 \\
\end{array}
\]

to

To get data to and from storage we will need instructions that set the A registers. Since the A registers only have 18 bits, these operations need only perform 18 bit arithmetic, while the X register operations above perform 60 bit arithmetic. A similar group of instructions must be provided to set the B registers; here, too only 18 bit arithmetic is necessary. To make things "complete," a third set of 18 bit arithmetic instructions has been provided which leaves the result in an X register. This is necessary, for example, to get the contents of B and A registers into X registers when the contents are to be stored or are an operand in a multiplication or division (multiplication and division, after all, are only done among X registers).

Finally, we need branch instructions to transfer control within the program. Normally when the CP has finished executing instructions in one word, it takes the next instructions from the next location in memory; in other words, the instruction location counter is regularly incremented by one. When a branch is made, the CP instead takes its next instruction from a location specified in the branch instruction. There are both unconditional branches (corresponding to GO TO statements) and conditional branches (corresponding to IF statements).
3.3 INSTRUCTION FORMATS

Each computer instruction is nothing more than a set of bits occupying a word or part of a word. Particular groups of bits in the instruction give specific information about the operation to be performed. One group, known as the operation code or opcode specifies the particular operation to be carried out. Other groups specify the operands or the sources of operands (i.e., register numbers) and the destination of the result (another register number).

In 6600 instructions, the operation code is the leftmost 6 bits of an instruction. The six bits allow for 64 different CP instructions (well, actually 71, because one opcode specifies one of a group of eight similar instructions). Though 71 instructions isn’t very many (most very large computers have several hundred), the 6600 instructions are sufficiently versatile and powerful and so fast that the 6600 can run circles around many other large computers with many more instructions. Often an entire program loop on a 6600 will be faster than a single instruction on another machine which performs the same calculation!

Consider a normal arithmetic instruction: how many bits are necessary to specify the entire instruction? We need the opcode (6 bits) plus the two operand registers and the result register. Since all registers involved in an arithmetic instruction are X registers, we need only give the register number, 0 - 7; hence each register specification requires 3 bits. Thus the instruction requires a total of 6 bits (opcode) + 6 bits (two operand registers) + 3 bits (result register) = 15 bits. Most of our instructions will be 15 bits; this size, conveniently enough, allows us to get 4 instructions in a single word.

If you think about it a while, however, you will see that inter-register instructions (those in which both operands and result are registers) aren’t enough. Assume that at the beginning of your program you do not know what is in any of the registers; as the first step in your program, you would like to load a variable 1, which you know to be at location 2167 (base 8) of your program. In other words, you want to set an A register to 2167. But now you realize that the only way to get the number 2167 is to load it out of memory (it’s not in any of the registers), so you wisely put the number 2167 in your program, in a variable K, location 2166(base8). Now your problem is how to get 2166...You suddenly realize that you’re stuck, and can’t even begin your problem (well, actually you could always keep the next needed addresses in location 0, and set A register to 80 = 0; such a
programming restriction, however, verges on the absurd).

As a result, we have some instructions which include an 18 bit constant to be used as one operand in place of a register. In addition to the case cited, having a constant in the instruction is particularly useful in branch instructions, since the location to which we branch is generally a constant, and not the result of an arithmetic calculation. In a 30 bit instruction which sets a register (i.e., not a branch), the type of result (A, B, or X) and the type of register from which the second operand is taken are both specified by the opcode, along with the operation to be performed. Hence the total length of such an instruction is, conveniently, 6 bits (opcode) + 3 bits (result register) + 3 bits (one operand register) + 18 bits (constant for second operand) = 30 bits, so we can put two such "long instructions" in one word, or one long instruction and two "short instructions" (30 + 15 + 15 = 60). If this seems a bit confusing now, don't worry; it should become clearer after we study some specific cases later on.

Having 64 opcodes permits a convenient division into 8 sets of 8 instructions. In general the instructions within one set of 8 (00 - 07 (base 8), 10 (base 8) - 17 (base 8), etc.) are closely related. This organization of the opcodes will make it easier to remember the instruction set after we have discussed the individual instructions. And now, having waded through these preliminaries, we are ready to begin studying the central processor instructions.

3.4 BRANCH INSTRUCTIONS

We begin our study with branch instructions for several reasons, the least of which is the fact that they constitute the first set of eight opcodes, 00 - 07. The chief reason is that it is impossible to write any useful code without knowing at least two or three of the branch instructions. After all, if, in the middle of a FORTRAN program we want to execute some code we wrote in machine language, we have to branch to the machine-language-coded routine, and at the end of the routine branch back to the main program. As we shall soon see, this involves at least two different branch instructions.
CENTRAL PROCESSOR INSTRUCTION SET

The simplest instruction of the group (not really a branch) is opcode 00, the program stop; the mnemonic we will use to designate the instruction when writing code is PS. It is a 30 bit instruction, but the remaining 24 bits are ignored; we diagram it thus

<table>
<thead>
<tr>
<th>PS</th>
<th>Program Stop (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>///////////////</td>
</tr>
<tr>
<td>29 23</td>
<td></td>
</tr>
</tbody>
</table>

with the numbers below the figure designating the bits, counting the rightmost as bit 0. A program stop does exactly what it says: it stops the central processor at the current step in the program. After a program stop, the CP has no means of restarting itself; it can only be restarted by a PP. (On the 7600 the instruction is called "error exit" and causes the CP to start executing the monitor program.)

Quite a number of other computers, incidentally, use a zero opcode for program stop. The reason for this is quite simple: if, due to programming error, your program runs amuck, and, say, starts trying to execute your data, there is a good chance that it will run into a zero opcode (since positive integers less than 2**54 have the six high bits zero). Thus the program will come to a halt quickly, without wasting much time.

We digress now from numerical order to look at opcode 02, the (unconditional) jump instruction, mnemonic JP. This instruction transfers CP control to (branches to) a location specified by the low 24 bits of the 30 bit instruction. Bits 21 to 23 specify a B register, (these bits in an instruction are referred to a "i,") and hence the specified register as "Bi"); bits 0 to 17 are treated as an 18 bit constant (these bits in an instruction are referred to as "K"). The 18 bit sum of this constant and the contents of the B register (i.e., Bi + K) is the location to which the branch is made. The instruction is diagrammed

<table>
<thead>
<tr>
<th>JP</th>
<th>Bi + K</th>
<th>Jump to Bi + K (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 1</td>
<td>/////</td>
<td>K</td>
</tr>
<tr>
<td>29 23 20 17</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Note that three bits of the instruction are ignored.

In most cases the address to which control is transferred is a constant which we can put in the K part of the instruction, so that we really don't want to add in any B register. In this case we let I = 0, so that the effective address is B0 + K = K (since B0 = 0). Using a B register, on the other hand, permits a simple computed GO TO statement. The FORTRAN statement

\[\text{GO TO}(100, 200, 300), I \]

may be coded, if the variable I is already in register B1, by

\[
\text{TABLE JP B1+TABLE} \\
\text{JP S100} \\
\text{JP S200} \\
\text{JP S300}
\]

where S100, S200, and S300 are the address of the statements with numbers 100, 200, and 300, respectively. TABLE is the location of the first jump instruction; we designate this by writing the label TABLE to the left of the instruction. When a label appears to the right of the mnemonic (in the address field) without any B register, register B0 is implied; thus JP S200 means JP B0+S200. Each jump instruction occupies the upper 30 bits of a separate word. Thus the first jump instruction branches to the second, third, or fourth (at TABLE+1, TABLE+2, TABLE+3) depending on whether B1=I=1, 2, or 3; these latter jumps go in turn to statements 100, 200, and 300.

Having taken care of the GO TO and computed GO TO statements, let us now consider the implementation of the CALL statement. The magic of the CALL statement is that, when a RETURN occurs in the called routine, the program transfers control back to the next statement after the calling sequence. When the CALL is made, the computer must store somewhere the address to which the called program should return; otherwise, the called routine will be unable to tell from where it was called. Since the process of CALLing, i.e., of transferring control to a routine in such a way that the program can return to the original sequence, is so common, it has been implemented as a single hardware instruction.

This instruction is the return jump, opcode 01, mnemonic RJ. When a jump at a location HERE to a location THERE is executed, two things happen: (1) at location THERE is stored a jump to HERE + 1 and, (2) control transfers to location THERE + 1. When
the routine beginning at THERE + 1 is finished, a jump to THERE will get control back to HERE + 1. The return jump is a 30 bit instruction, like the jump instruction, but contains only an 18 bit constant for an address; no B register is specified (since a "computed call" is such a rare occurrence). The instruction is diagrammed:

<table>
<thead>
<tr>
<th>RJ</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[-------------------]</td>
<td>29</td>
</tr>
</tbody>
</table>

With this information, we can give a specific numerical example: before execution of the RJ at location 325 to location 1732.

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Instruction</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 325 (base 8)</td>
<td>01 00 001732 00000 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location 1732 (base 8)</td>
<td>00 00 000000 00000 00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(the instructions of the called routine start at location 1733).

After execution of the RJ.

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Instruction</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 325 (base 8)</td>
<td>01 00 001732 00000 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location 1732 (base 8)</td>
<td>04 00 000326 00000 00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

and the CP has begun executing the routine starting at 1733. You may notice that the instruction at 1732 is an 04 opcode, not an 02 jump; as we shall see directly, in this case it is also an unconditional jump instruction.

This completes our discussion of unconditional branch instructions, and we shall now proceed to study the remaining conditional branch instructions, opcodes 03 through 07. A conditional branch instruction is an instruction which causes a transfer of control only if a certain condition exists, such as an X register being zero or one B register being equal to another B register. If the condition is not met, the CP continues on to the next instruction, as usual. There are some branches which depend on the values of X registers, and some which depend on values of B registers; no branches involve tests of A registers, since A registers are generally not used for the results of arithmetic calculations.
There are a total of 8 different X register branches; because of the limited number of opcodes (64), all the branches have been put under one six-bit opcode, 03. The type of branch is specified by the next three bits, 21 to 23; thus for X register branches there is effectively a 9 bit operation code. The register number is given by the next three bits, 18 to 20 (termed the "j" part of the instruction), and the address to which the branch is made if the condition is met is given by the last 18 bits (K). We shall discuss the first four branches now; the other four are special tests for floating point numbers, and will be discussed later.

Opcode 030 is a zero jump (mnemonic ZR): control transfers to K if Xj is zero. Both plus zero, 000...000, and minus zero, 777...777 (base 8), meet this condition; any other value does not.

<table>
<thead>
<tr>
<th>ZR</th>
<th>Xj, K</th>
<th>Jump to K if Xj = 0</th>
<th>(30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3 0</td>
<td>j</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>20</td>
<td>17</td>
</tr>
</tbody>
</table>

Opcode 031 is the exact opposite: a non-zero jump (mnemonic NZ). The branch to K occurs if Xj contains anything other than plus or minus zero.

<table>
<thead>
<tr>
<th>NZ</th>
<th>Xj, K</th>
<th>Jump to K if Xj ≠ 0</th>
<th>(30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3 1</td>
<td>j</td>
<td>K</td>
</tr>
</tbody>
</table>

The next two opcodes test the sign of an X register. Opcode 032 is a plus jump (mnemonic PL): a transfer is made to K if Xj is a positive. As you will recall, this has been defined to mean that the high order bit of the X register is 0.

<table>
<thead>
<tr>
<th>PL</th>
<th>Xj, K</th>
<th>Jump to K if Xj positive</th>
<th>(30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3 2</td>
<td>j</td>
<td>K</td>
</tr>
</tbody>
</table>
Finally, opcode 033 is a minus jump (mnemonic NG): the branch is made if Xj is negative, i.e., the high order bit of Xj is 1.

<table>
<thead>
<tr>
<th>NG Xj, K</th>
<th>Jump to K if Xj negative (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3 3 j</td>
<td>K</td>
</tr>
</tbody>
</table>

By now you have probably recognized that the X register branches come in pairs of complementary (opposite) conditions. For example, if the condition for opcode 030 is met (=0) that for opcode 031 (does not equal 0) is not, and vice versa.

As an application of X register branches, consider the arithmetic IF statement

\[
\text{IF (NUMBER) 100, 200, 300}
\]

If NUMBER is in X1, this becomes simply

\[
\begin{align*}
\text{ZR} & \quad \text{X1, S200} \\
\text{PL} & \quad \text{X1, S300} \\
\text{JP} & \quad \text{S100}
\end{align*}
\]

where S100, S200, S300 are, as before, the locations corresponding to statement number 100, 200, and 300. Note that the order in which the tests are made is important; for example,

\[
\begin{align*}
\text{PL} & \quad \text{X1, S300} \\
\text{ZR} & \quad \text{X1, S200} \\
\text{JP} & \quad \text{S100}
\end{align*}
\]

will not work (do you see why?). Suppose X1 contains plus zero; we would then want to go to 200. The first code indeed does, but the second brings us instead to S300, since plus zero is positive. Thus one must check for zero before testing the number for sign. We may note, incidentally, that the instruction

\[
\text{NG X1, S100}
\]

could be used instead of the unconditional jump; however, the unconditional jump is faster (since it does not have to make a test).

We now come to the last set of jump instructions, the B register branches. In contrast to the X register branches, the B register
branches depend on relational conditions: whether one B register is equal to another, greater than another, etc. B registers are typically used for indices, and these relational test instructions are particularly convenient for loop control (e.g., checking whether an index exceeds the upper limit, kept in another B register). Comparisons against B0 can always be used for tests like those in X register branches (zero, positive, etc.) B register branches occupy opcodes 04 to 07; the six bit opcode specifies the relation to be tested for.

Like all the other jump instructions, B register branches are 30 bit instructions. The numbers of the two registers to be compared are in bits 21 to 23 (i) and 18 to 20 (j). The address to which control is transferred if the branch is successful is in bits 0 to 17 (K).

Opcodes 04 is the equal jump (mnemonic EQ); the branch is made if Bi = Bj.

\[
\begin{array}{cccccc}
\text{EQ} & \text{Bi}, \text{Bj}, \text{K} & \text{Jump to K if Bi=Bj} & (30 \text{ bits}) \\
0 & 4 & 1 & i & j & K \\
29 & 23 & 20 & 17 & 0 \\
\end{array}
\]

A B register can be checked for a value of zero by setting one of the register numbers to zero:

\[
\begin{array}{cccccc}
\text{ZR} & \text{Bi}, \text{K} & \text{Jump to K if Bi = 0} & (30 \text{ bits}) \\
0 & 4 & 1 & 0 & K \\
\end{array}
\]

Note that this instruction actually tests if Bi = B0; as a result, only plus zero (000000) and not minus zero (777777) causes a branch.

Opcodes 05 is the complementary condition: not equal branch (mnemonic NE); the jump is performed if Bi does not equal Bj.

\[
\begin{array}{cccccc}
\text{NE} & \text{Bi}, \text{Bj}, \text{K} & \text{Jump to K if Bi \neq Bj} & (30 \text{ bits}) \\
0 & 5 & 1 & j & K \\
\end{array}
\]
CENTRAL PROCESSOR INSTRUCTION SET

By setting j = 0 (or i = 0) this instruction can also be used for a non-zero test.

\[
\begin{array}{c|ccc|c}
NZ & B_i & K & \text{Jump to K if } B_i \neq 0 & (30 \text{ bits}) \\
0 & 5 & i & 0 & K \\
\end{array}
\]

Again, because a comparison is made against B0 (= plus zero), negative zero is treated as non-zero.

Opcode 06 is greater-than-or-equal jump (mnemonic GE); a transfer to K is made if \(B_i \geq B_j \).

\[
\begin{array}{c|ccc|c}
GE & B_i, B_j, K & \text{Jump to K if } B_i \geq B_j & (30 \text{ bits}) \\
0 & 6 & i & j & K \\
\end{array}
\]

In making the comparison, the B registers are treated as signed numbers. Thus a positive number, such as 012345 (base 8), is greater than a negative number, such as 765432 (base 8). With j = 0, the instruction becomes a positive test:

\[
\begin{array}{c|ccc|c}
PL & B_i, K & \text{Jump to K if } B_i \text{ positive} & (30 \text{ bits}) \\
0 & 6 & i & 0 & K \\
\end{array}
\]

Finally, opcode 07 is the complementary condition to 06, a less-than branch (mnemonic LT); the jump is made if \(B_i < B_j \).

\[
\begin{array}{c|ccc|c}
LT & B_i, B_j, K & \text{Jump to K if } B_i < B_j & (30 \text{ bits}) \\
0 & 7 & i & j & K \\
\end{array}
\]

By the rule that a negative number is less than a positive number, minus zero is considered less than plus zero (but don't ask how much less). By the same technique used above, this
CENTRAL PROCESSOR INSTRUCTION SET

An instruction provides a negative B register test:

\[
\begin{array}{c|c|c|c|c|c}
\text{NG} & \text{Bi, K} & \text{Jump to K if Bi negative} & \text{(30 bits)} \\
\hline
0 & 7 & 1 & 0 & K \\
\end{array}
\]

After a first glance at the opcodes, you might remark that only four of the six basic relations have been provided -- less-than-or-equal and greater-than have been omitted. But a moment's reflection should make you realize that, by reversing the order of the registers, these other two conditions may be easily tested for. A LT Bi, Bj, K may also be considered a jump on Bj greater than Bi, and a GE Bi, Bj, K also used as a jump on Bj less-than-or-equal-to Bi. These relation-testing jumps thus constitute a powerful, versatile set of instructions. For example, to determine whether the contents of a B register is strictly positive (i.e., greater than zero), we require only one instruction,

\[
\text{LT} \quad \text{BO, Bi, K}
\]

Since we have not yet discussed the instructions for setting B registers, no real examples of the use of these instructions are possible at the moment. One item of note should, however, be mentioned: the instruction EQ B0,B0,K. This clearly is an unconditional jump to K, just like JP K (and just EQ Bi,Bi,K is, i=1,...,7). As you may recall, the EQ B0,B0,K instruction came up earlier in connection with the return jump instruction; it is the 0400 K which is stored by the RJ instruction. This EQ B0,B0 is also used by the FORTRAN compiler to implement the GO TO statement. Why? Because EQ B0,B0 under certain circumstances is faster than JP, and in the remaining cases takes the same time to execute (the reasons for this are too involved to explain at present). As a result, it is a common programming practice to use EQ B0,B0 in place of the JP when an unindexed jump is required. In accordance with the general rule that if no register is mentioned B0 is implied, we may write this unconditional branch as EQ K.
3.5 WRITING ASSEMBLY LANGUAGE CODE

Before we continue discussing the CP instructions, some practical information on how to write code at the machine-instruction level is in order. In the same way that a compiler is used to translate FORTRAN, a program called an assembler is used to translate the mnemonics we use in writing our program into the binary numbers accepted by the machine. Several assemblers have been written for the 6600; some are very simple, and can process little except the instruction mnemonics, while others are highly sophisticated -- almost as complicated as a compiler -- and offer the user great programming flexibility.

The original (non-operating) operating system for the 6600, SIPROS, (Simultaneous PROcessing Operating System), included a fancy assembler called ASCENT (Assembly System Central Processor). SIPROS ASCENT permitted the programmer to internix FORTRAN statements and assembly language code (machine mnemonics), within the same program. Thus, if in the middle of his FORTRAN program the user had some processing which he wanted to code in assembly language, he could simply put his ASCENT code right there. This made things more complicated for the assembler-compiler writer, of course, because the combined program had to be able to recognize both FORTRAN and ASCENT instructions.

With the first operating operating system, the Chippewa Operating System, came several assembly programs. The Chippewa FORTRAN compiler alone accepted two different assembly languages (the same instruction had altogether different mnemonics in the two languages). The Chippewa assembly language (CLASS), the original 6600 assembly language, is very little used any longer. The other language, ASCENTF, was a subset of ASCENT, with the same mnemonics as ASCENT, though not all of its features. In addition, in the Chippewa operating system, a separate assembly program, similar to SIPROS ASCENT, was available under the name ASCENT.

More recent operating systems -- SCOPE, KRONOS, and NOS -- include the most sophisticated 6600 assembler, COMPASS. This assembler is considerably more versatile than even SIPROS ASCENT. It is not possible in COMPASS, however, to write a few lines of FORTRAN, then some assembly language, then some FORTRAN. The main program and each of the subprograms (subroutines or function subprograms) must be written entirely in one language. Thus one can mix a main program and FORTRAN subroutines with assembly language subroutines, but may not mix FORTRAN and assembly language within a subroutine. This, incidentally, is a general
restriction in assembler-compiler systems; the line-by-line mixing facility which SIPROS ASCENT would have had (if it had ever worked) is not generally available.

In this chapter we will try to cover the most basic information required for writing COMPASS subroutines. The next chapter will introduce some of the fancier features of COMPASS.

A line of source code representing an instruction consists of four fields: a location field, an opcode field, an address field, and a comments field. A field is a portion of a line given over to a particular purpose. For example, in a FORTRAN card the first five columns may be described as the statement number field. The location or label field permits a name to be associated with the location of the instruction (recall the example of the computed G0 T0). The opcode and address fields specify the instruction; the opcode field has the mnemonic part, and the address field the remainder of the instruction. For example:

<table>
<thead>
<tr>
<th>location field</th>
<th>opcode field</th>
<th>address field</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERE</td>
<td>EQ</td>
<td>B1,B3, THERE</td>
</tr>
</tbody>
</table>

Note that the address field will generate more than just an address (label). A blank indicates the end of each of these three fields; consequently, these fields must be separated by at least one blank and may contain no embedded blanks. The comments field, the last field on a card, allows the programmer to include informative remarks concerning the instruction; the comments field must be separated from the address field by at least one blank, and may contain blanks.

The label (symbol in the location field) must start in either column 1 or column 2. Symbols in COMPASS may have 1 to 8 characters. Although some special characters are allowed in symbols, we shall restrict ourselves to names beginning with a letter and containing only letters and digits (just like names in FORTRAN). The opcode may start in column 3 or after; general practice is to start in column 11. Although the address field may begin anywhere after the opcode (up to column 29), and the comments field anywhere after the address, easy readability of the written code dictates that standard starting columns be selected for these two fields. Representative conventions are: columns 18 (address field) and 30 (comments field), or columns 18 and 36. Thus a sample card would appear:
Any field except the opcode field may be omitted. If the location field is blank, no name is associated with the location of the instruction. Also, if there is a label in that field, the instruction automatically gets put at the beginning of a word (leftmost part); otherwise, the instruction would go into the next available space. As we have seen, this may mean that the instruction is put in the middle or end (right part) of a word. Thus the sequence of instructions

```plaintext
LABEL EQ B1,B2,TEST1
MABEL ZR X4,TEST2
```

will occupy two words (with the instructions left justified in those words), while

```plaintext
LABEL EQ B1,B2,TEST1
ZR X4,TEST2
```

puts both 30 bit instructions into one word. In the former case the question naturally arises, what is in the low 30 bits of the two words? We can't just leave them zero, because then (supposing B1 does not equal B2) the computer encounters a 00 opcode, a program stop. As a result, the computer has a special instruction used for "padding out" words of instructions like these. It is opcode 46, and is called a no operation instruction (more commonly, a "no-op"):

```plaintext
NO No operation (15 bits)

4 6 /////////////////
14 8 0
```

When the computer encounters a no-op instruction, the computer does absolutely nothing except pass on to the next instruction; hence the instruction is also called a "pass instruction." In our example, we have to pad out 30 bits, so we put two no-ops in a row: 4600046000. Thus, if TEST1 is location 242, and TEST2 location 272, the two words are

```plaintext
(LABEL) 0412000242 4600046000
(MABEL) 0304000272 4600046000
```
CENTRAL PROCESSOR INSTRUCTION SET

The effect of a label of putting the instruction on the card into the upper (leftmost) portion of a new word is called "forcing upper." One additional rule you should be aware of is that forcing upper is automatic after an unconditional branch instruction. This is reasonable enough, since in all probability you will never want to put another instruction in a word after an unconditional branch (it would never be executed). This explains why, in our computed GO TO table, each jump appears in a separate word: after each jump, forcing upper is automatic, so the next jump is put in a new word. Similarly, a RJ is unconditional, so

ME RJ EWE
PL X0, RAM

takes up two words. Now how about

THINK EQ HARD
LT B7,B6,RELAX ?

You will be happy to hear that COMPASS realizes that this is really an unconditional branch, so the LT instruction is forced upper.

Comment cards are indicated by an asterisk (*) in column 1 (just as they are indicated by a C in column 1 in FORTRAN). Comments on an otherwise blank card (with no * in column 1) must begin in or after column 30, or an assembly error will result.

Like all other subprograms, assembly subroutines require header and end cards. The end card is simple enough: just the word END, starting in column 11. In COMPASS the form of the header card is

IDENT SUBNAME

with IDENT beginning in column 11, followed by the subprogram name (SUBNAME in the example above.)
3.6 SUBPROGRAM LINKAGE AND PARAMETER TRANSMISSION

With what we have learned so far, we are ready to write our first assembly language subroutine. Since we don't know many instructions yet, our subroutine will be somewhat less than awe-inspiring; in fact, it will do absolutely nothing, just like the FORTRAN

```
SUBROUTINE DUMB
RETURN
END
```

The first line of our COMPASS routine will be

```
IDENT DUMB
```

Now, recall that we are going to enter this subroutine by means of a return jump instruction. The first thing the RJ is going to do is store a jump back to the calling routine, so we must set aside a word into which this will be stored. This word is called the entry line.

We could set aside a word by writing an unconditional jump instruction (so the next word is forced upper). There is, however, a special instruction which tells the assembler to set aside several words: BSS. A "BSS" allocates as many words as specified by the address field, for example,

```
BSS 13
```

reserves 13 words of storage. You should be warned that words set aside by a BSS are not set to zero; the contents of these words is unpredictable (or, as we would say if we were writing a computer science text, undefined). BSS stands for "block started by symbol," so-called because if there is a symbol (label) in the location field, it is associated with the first word of the block. The BSS and similar instructions which do not generate machine instructions are called pseudo-instructions. Thus the next line of our subroutine is

```
DUMB BSS 1
```

The instructions of the subroutine begin in the next word after the entry line. In our example, we have only a RETURN statement, i.e., a jump to the entry line:

```
EQ DUMB
```
Tack on an END card and put it all together and we’re done -- well, almost. One small problem remains: ordinarily, symbols in one COMPASS subroutine, like variables and statement numbers in a FORTRAN subroutine, cannot be referred to in another routine. Since we want to be able to refer to the label DUMB in our calling routine, we have to declare it an entry point:

ENTRY DUMB

(Note: symbols which are declared to be entry points may have only 7 characters, not 8.) Then, if in the calling program we declare the symbol DUMB to be "external":

EXT DUMB

we are allowed to refer to it by name:

RJ DUMB

With this problem well in hand, we are ready to put together our first subroutine:

IDENT DUMB
ENTRY DUMB
DUMB BSS 1
EQ DUMB
END

Before we start discussing parameters, I ought to tell you what you can do with your DUMB subroutine.

If you wanted to assemble the routine separately, you could invoke the assembler directly (with a COMPASS control card). All the COMPASS routines we will write, however, are subroutines to be invoked by FORTRAN routines, so we will make use of a valuable feature of the 6600 series FORTRAN compilers: anywhere you can put a FORTRAN routine in your source deck, you can also put a COMPASS subroutine. The compiler automatically transfers control to COMPASS when it notices a card with IDENT beginning in column 11, and COMPASS returns control to the compiler when it encounters a FORTRAN header card.

Thus, a possible complete (and completely useless) source program is:

PROGRAM DODO
CALL DUMB
STOP
END
CENTRAL PROCESSOR INSTRUCTION SET

<table>
<thead>
<tr>
<th></th>
<th>IDENT</th>
<th>DUMB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENTRY</td>
<td>DUMB</td>
</tr>
<tr>
<td>DUMB</td>
<td>BSS</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EQ</td>
<td>DUMB</td>
</tr>
<tr>
<td></td>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

Note that the FORTRAN statement

```
CALL DUMB
```

is effectively translated into

```
EXT DUMB
RJ DUMB
```

since DUMB is an entry point in the subroutine and hence must be declared external to the main program.

Now that you know what to do with your DUMB subroutine, we can proceed to the second topic of this section: the transmission of subroutine parameters. (The term parameter and argument are used interchangeably.)

When writing assembly code, of course, it won't do just to put the dummy parameter name in an instruction, as you would when writing FORTRAN, and have the assembler magically fetch the parameter for you. You are writing the code instruction-by-instruction, and so have to know, in real hardware terms, where the parameters are.

In the first place, FORTRAN always transmits the address of the parameter, and not the parameter itself. For example, if you write

```
CALL WXYZ(K)
```

it will transmit the address of K to subroutine WXYZ; likewise, if the statement is

```
CALL WXYZ(2)
```

it will transmit the address of a location containing the number 2. To try to transmit instead the value itself would cause quite a few difficulties; for example, if A were a 100 by 100 matrix, and subroutine OREZ set one element to zero, and the call were

```
CALL OREZ(A)
```
the FORTRAN routine would have to transmit all 10,000 elements, not knowing which would be changed. Or, consider transmitting a function name as a parameter:

```
EXTERNAL TAN
CALL SUN(TAN)
```

one can't very well transmit to SUN the value of TAN; it doesn't have one by itself. Hence, the only thing to do is to transmit the address of the TAN routine.

The calling sequence generated by the FORTRAN Extended compiler stores the addresses of the parameters in a series of consecutive words of memory, followed by a word of zeros. The compiler then sets Al to the address of the first of these words. Recall from section 3.1 that setting Al will cause the contents of that memory location to be put in X1; thus, in this case X1 will contain the address of the first parameter. For example, if we had a routine with two parameters, whose addresses were 2110 and 2120, the situation might look like this:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>4601</td>
<td>location</td>
<td>4601</td>
</tr>
<tr>
<td>X1</td>
<td>2110</td>
<td>"</td>
<td>4602</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>4603</td>
</tr>
</tbody>
</table>

It is usual that the calling sequences generated by compilers for different languages (such as FORTRAN, COBOL, and PL/I) are incompatible, so that a routine written in one language cannot directly call one written in another language. Control Data, however, always one step ahead of the other manufacturers, has arranged things so that the calling sequences generated by the two FORTRAN compilers -- RUN and FORTRAN Extended -- are also incompatible. Consequently, assembly language routines must be coded differently for use with the two compilers. RUN was the original CDC FORTRAN compiler, but it is no longer used very much, so all the examples presented in this volume will assume a FORTRAN Extended calling sequence. The RUN calling sequence (and some additional notes about parameter passing in FORTRAN Extended) are given in the section "More About Passing Parameters" toward the end of this volume.

One final item regarding argument transmission needs to be covered: returning the value of a function. Since we know that the result of a function is always a number, and not an array or
the address of a function, we needn't go through the trouble of storing the result at an address passed to the function. Instead, the result is returned directly in a register, X6. The calling sequence, after the RJ to the function, simply takes the result out of X6.

The assembler does not differentiate between subroutines and functions. It is up to you to remember, if you referenced the routine as a function (in a replacement statement, e.g., \(Y = \text{TINY}(X) \)), to write the routine as a function -- return the result in X6. Similarly, if you referenced the routine as a subroutine in a CALL statement, you have to write it as a subroutine -- return all results via parameters. That the differentiation between subroutines and functions is entirely your concern is emphasized by the fact that in COMPASS there is only one header card for both types of routines:

```
IDENT TINY
```

In the next section, after introducing some more instructions, we will consider a simple assembly-language function. If this discussion of parameter transmission has gotten you somewhat confused, the examples in the next few sections should help to clarify matters.

3.7 SET INSTRUCTIONS

Together with the branch instructions, the set of instructions known as the set instructions (or, technically, "increment unit instructions") constitute the two most important groups of instructions. These two groups are both necessary and sufficient for writing useful assembly language routines.

The set instructions perform 18 bit (one's complement) addition and subtraction. They provide the only means of setting A registers, and, with the exception of a few instructions for manipulating floating point numbers, the only means of setting B registers. They are also required for putting an A or B register in an X register.

There are 24 set instructions, opcodes 50(base8) to 77(base8). They are organized as three groups of eight instructions (opcodes 50-57, 60-67, 70-77); these three groups are set-A-register, set-
B-register, and set-X-register instructions, respectively. Except for the type of result register, these three sets are entirely identical. We shall begin when with a consideration of the set-X-register group; when that is done, the set-A and set-B groups will require little further explanation.

The increment unit instructions leaving the result in an X-register (i.e., set X), opcodes 70-77, can be further divided into two groups, the long instructions, opcodes 70-72, and the short instructions, opcodes 73-77. The long instructions, as you may recall, are 30 bit instructions in which one of the two operands is an 18 bit constant appearing in the instruction. The three instructions permit calculation of A register + constant, B register + constant, and X register + constant.

<table>
<thead>
<tr>
<th>SXi A + K</th>
<th>Set Xi to A + K (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 0 1 j</td>
<td>K</td>
</tr>
<tr>
<td>29 23 20 17</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SXi B + K</th>
<th>Set Xi to B + K (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 1 1 j</td>
<td>K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SXi X + K</th>
<th>Set Xi to X + K (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 2 1 j</td>
<td>K</td>
</tr>
</tbody>
</table>

Since you (hopefully) remember that X registers are 60 bit registers, you may be wondering how we can do 18 bit arithmetic with them. When an X register is an operand in a set instruction, only the low 18 bits are used -- the remainder are ignored. When the result of a set instruction is placed in an X register, the 18 bit result is put in the low 18 bits and the sign is extended. That is, if the result is positive, the high 42 bits become zero, while if it is negative the high 42 bits are set to one. In this way, the correct positive and negative numbers will be stored in X registers. So, for example, if Al = 003215(base8), a

```
SXi Al+2
```

CENTRAL PROCESSOR INSTRUCTION SET

will set X1 to 00000 00000 00000 03217 (base 8). If B4 = -4 (777773 (base 8)) then

 SX7 B4+2

will set X7 to -2 (77777 77777 77777 77775 (base 8)). Note that in the last case the set instruction first creates the result 777 775, and the negative sign is then extended.

Results other than those desired may occur if the magnitude of an X register used as an operand exceeds 377777 (base 8). For example, if X0 = 1475231 (base 8), the instruction

 SX0 X0+6

will set X0 to 77777 77777 77774 75237 (base 8) (surprise!). First X0 is truncated to 18 bits, 475231 (base 8), then 6 is added to give 475237 (base 8). This is a negative 18 bit number (bit 17 is a 1) so the negative sign is extended, setting the high 42 bits to 1.

The assembler allows instruction of the form SXi Aj-K, SXi Bj-K, and SXi Xj-K. There are not, however, any separate machine instructions for subtracting constants. Instead, the assembler stores the one's complement of K in the instruction. For example,

 SX3 A1 - 10

becomes

 70 3 1 777765

(since 10 is 12 (base 8)); like FORTRAN, numbers are assumed decimal unless suffixed by a B). Also,

 SX6 X1 - 777607B

becomes

 72 6 1 000170

i.e.,

 SX6 X1+170B

It is possible, as it was in the JP instruction, to omit specifying any register:

 SX2 314

in this case B0 is understood, so a

 SX2 B0+314
is assembled, which indeed sets X2 to 314. Since a label is essentially a number (the number of the location it is associated with), a label can be used in place of a number in these instructions:

| SX2 | ABLE |
| SX5 | B1+MABEL |

The short instructions, opcodes 73-77, are 15 bits long; they calculate the sum or difference of two registers. There are theoretically 15 possible combinations (SX1 Aj+Ak, Aj+Bk, Aj+Xk, Bj+Bk, Bj+Xk, Xj+Xk, Aj-Ak, Aj-Bk, Aj-Xk, Bj-Bk, Bj-Xk, Xj-Xk, Bj-Ak, Xj-Ak, Xj-Bk) but the limited number of opcodes restricts us to five; which five? The hardware designers reasoned that, since indices would normally be kept in B registers, the most useful instructions would be those for adding and subtracting B registers from A, B, and X registers. This leaves six opcodes; deeming SX1 Xj-Bk least useful, they implemented:

<table>
<thead>
<tr>
<th>SXi Xj+Bk</th>
<th>Set Xi to Xj+Bk</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 3 i j k</td>
<td>(15 bits)</td>
</tr>
<tr>
<td>14 8 5 2 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SXi Aj+Bk</th>
<th>Set Xi to Aj+Bk</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 4 i j k</td>
<td>(15 bits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SXi Aj-Bk</th>
<th>Set Xi to Aj-Bk</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 5 i j k</td>
<td>(15 bits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SXi Bj+Bk</th>
<th>Set Xi to Bj+Bk</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 i j k</td>
<td>(15 bits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SXi Bj-Bk</th>
<th>Set Xi to Bj-Bk</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 7 i j k</td>
<td>(15 bits)</td>
</tr>
</tbody>
</table>

57
CENTRAL PROCESSOR INSTRUCTION SET

As you must have realized by now, making a set-instruction mnemonic is very simple: the opcode field is the result register, prefixed by "S"; the address field has the two operands, separated by + or -. Unfortunately, this logical set of mnemonics tempts programmers to make up nonexistent instructions as necessary for their programs. You are urged to remember that it is possible to add or subtract a B register from another register, but not X register minus B register.

The mnemonics are self-explanatory, and the operations the same as those involved in the long instructions, so a few examples should suffice to make the instructions clear: if B1 = 2 and B7 = 3,

SX6 B1+B7

set X6 to 5, while

SX6 B1-B7

sets X6 to -1 (77777 77777 77777 777776 (base8)).

A set instruction may contain simply one register designation in the address field:

SX6 A0

In such a case, two different but equivalent instructions could be assembled:

SX6 A0+O (opcode 70) or
SX6 A0+B0 (opcode 74).

Can you figure out which is preferable? Since the instructions are otherwise equivalent, the shorter one (opcode 74 -- 15 bits) is preferred, so the assembler will generate SX6 A0+B0. Although saving 15 bits may not seem very important, it adds up to a lot of words in a 20 or 30 thousand instruction program.

Now to write our first useful routine, LOCF. You may be acquainted with the LOCF function from FORTRAN. It has one argument and returns as its result the address of the argument: the value of

LOCF(A)

is the location of A in memory (the first location of A, if A is an array).
CENTRAL PROCESSOR INSTRUCTION SET

To write our routine, we have to answer: where do we get the operand (argument) from, what operation do we perform on the operand, and where do we leave the result? The input to the routine is the address of the argument, which is in X1; the expected output is precisely this address, in X6 (remember, a function always returns its value in X6). Thus all the routine has to do is take what it gets in X1 and put it into X6.

<table>
<thead>
<tr>
<th>IDENT</th>
<th>LOCF</th>
<th>ENTRY</th>
<th>LOCF</th>
<th>BSS</th>
<th>ENTRY</th>
<th>ENTRY LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SX6</td>
<td>X1</td>
<td>PUT RESULT INTO X6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EQ</td>
<td>LOCF</td>
<td>RETURN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>END</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The set A register instructions, opcodes 50–57, are the same, except for result register type, as the set X instructions:

- Opcode 50 SAi Aj+K Set Ai to Aj+K (30 bits)
- Opcode 51 SAi Bj+K Set Ai to Bj+K (30 bits)
- Opcode 52 SAi Xj+K Set Ai to Xj+K (30 bits)
- Opcode 53 SAi Xj+Bk Set Ai to Xj+Bk (15 bits)
- Opcode 54 SAi Aj+Bk Set Ai to Aj+Bk (15 bits)
- Opcode 55 SAi Aj−Bk Set Ai to Aj−Bk (15 bits)
- Opcode 56 SAi Bj+Bk Set Ai to Bj+Bk (15 bits)
- Opcode 57 SAi Bj−Bk Set Ai to Bj−Bk (15 bits)

Recall that setting Ai through A5 to an address loads the contents of that location into the associated X register, while setting A6 or A7 stores the contents of the X register at the specified location. Setting A0 causes no memory reference.

Your job is assigned a definite number of words in central memory in which to run, known as its field length (FL). If a program attempts to reference an address (load or store) beyond its field length, the job will be aborted with the day file message "CPU ERROR EXIT AT 012345, CM OUT OF RANGE".

With this information, we are ready for our second subroutine. This routine has two arguments, and puts in the second argument the contents of the first, truncated to 18 bits, with the sign of the 18 bit number extended to the high 42 bits. This non-too-useful routine at least has the merit that it can be coded in terms of the instructions studied so far:
CENTRAL PROCESSOR INSTRUCTION SET

IDENT SET
ENTRY SET
SET BSS 1 ENTRY LINE
SA2 A1+1 X2=ADDRESS OF SECOND ARGUMENT
SA1 X1 X1=FIRST ARGUMENT
SX6 X1 X6=FIRST ARGUMENT, TRUNCATED
SA6 X2 STORE INTO SECOND ARGUMENT ADDRESS
EQ SET
IND

Since this is our first procedure of some complexity, let's examine it closely. Suppose the routine is called as follows:

CALL SET (I,J)

where I and J's memory addresses are 2730 and 2462, respectively, and the value of I is 2146435 (octal). Thus, the calling sequence might look like this:

```
<table>
<thead>
<tr>
<th></th>
<th>3043</th>
<th>location</th>
<th>3043</th>
<th>2730</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2730</td>
<td></td>
<td>3044</td>
<td>2462</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3045</td>
<td>0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2730</td>
<td>2146435</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2462</td>
<td>????</td>
</tr>
</tbody>
</table>
```

(the contents of location 2462 is of no interest to us).

The SA2 A1+1 adds one to the address in A1 (A1 itself is not modified) and set A2 to this new address, causing a fetch of the address of the second parameter to X2 (A2 = 3044; X2 = 2462). The SA1 X1 sets A1 to the address of the first parameter, hence fetches the first parameter to X1 (A1 = 2730; X1 = 2146435). The SX6 X1 performs the necessary truncation and sign extension, leaving the result in X6 (X2 = 2146435; X6 = 146435). SA6 X2 put the address of the second parameter in A6, storing the result into the second parameter (A6 = 2462; contains of location 2462 = 146435).
CENTRAL PROCESSOR INSTRUCTION SET

If the routine was called with a constant

CALL SET (1,J)

location 3043 would not contain the number one. The FORTRAN compiler would create a variable called ONE, for example, whose contents is the number one and set the contents of 3043 to the address of ONE.

The third group of set instructions, for B registers, is the same as the other two:

opcode 60 SB1 Aj+K Set Bi to Aj+K (30 bits)
opcode 61 SB1 Bj+K Set Bi to Bj+K (30 bits)
opcode 62 SB1 Xj+K Set Bi to Xj+K (30 bits)
opcode 63 SB1 Xj+Bk Set Bi to Xj+Bk (15 bits)
opcode 64 SB1 Aj+Bk Set Bi to Aj+Bk (15 bits)
opcode 65 SB1 Aj-Bk Set Bi to Aj-Bk (15 bits)
opcode 66 SB1 Bj+Bk Set Bi to Bj+Bk (15 bits)
opcode 67 SB1 Bj-Bk Set Bi to Bj-Bk (15 bits)

The instructions SB0 B0+7 is perfectly acceptable, and will not cause the computer to blow a transistor. However, after the instruction has been executed, B0 will still be zero (it is permanently zero).

A common use of the set-B instructions is in program loops. For example the FORTRAN loop

\[K = 0 \]
\[\text{DO 20 I = 1,10} \]
\[20 \ K = K + 1 \]

could be coded as follows, where X0 is used instead of K

\[
\begin{array}{c|c}
\text{SB1} & 10 & \text{SET LOOP UPPER BOUND} \\
\text{SB2} & 1 & \text{SET LOOP LOWER BOUND} \\
\text{LOOP SX0} & \text{X0+B2} & \text{ADD IN LOOP COUNTER} \\
\text{SB2} & B2+1 & \text{INCREMENT LOOP COUNTER} \\
\text{GE} & B1,B2,LOOP & \text{CHECK IF WE'RE DONE} \\
\end{array}
\]

Another, less useful, routine is a function to add two integers of magnitude less that 2**16 - 1. The function, called SUM, has as its arguments the two addends. Thus all the routine has to do is to load the two arguments and add them, leaving the result in X6:
CENTRAL PROCESSOR INSTRUCTION SET

SA1 B1
SA2 B2
SX6 X1+X2

All right? Not quite: there is no instruction SX6 X1+X2. What we have to do is put one operand into a B register, and then add them:

<table>
<thead>
<tr>
<th>IDENT</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>SUM</td>
</tr>
<tr>
<td>SUM</td>
<td>BSS 1</td>
</tr>
<tr>
<td>SA2</td>
<td>A1+1</td>
</tr>
<tr>
<td>SA1</td>
<td>X1</td>
</tr>
<tr>
<td>SA2</td>
<td>X2</td>
</tr>
<tr>
<td>SB3</td>
<td>X2</td>
</tr>
<tr>
<td>SX6</td>
<td>X1+X3</td>
</tr>
<tr>
<td>EQ</td>
<td>SUM</td>
</tr>
<tr>
<td>END</td>
<td>RETURN</td>
</tr>
</tbody>
</table>

ENTRY LINE
X2=ADDRESS OF SECOND ARGUMENT
X1=FIRST ARGUMENT
X2=SECOND ARGUMENT
B3=SECOND ARGUMENT
X6=SUM
RETURN

We wouldn't want to use an A register (except A0) instead of B3, lest we produce a memory reference out of range or accidentally store into a needed location. Note that since the magnitude of the operands is less that $2^{*16} - 1$, the sum is less than $2^{*17} - 1$, avoiding the problem of truncation of the set instruction.

A small warning should be made at this point: the FORTRAN extended compiler assumed that functions and subroutines do not change the value of A0. If you write a routine which uses A0, you must save the value of A0 at the beginning of the routine and restore the original value before returning. To simplify matters, we shall avoid using A0 in the routines in this book.

3.8 BOOLEAN INSTRUCTIONS

Having dispatched the jump and increment unit (set) instructions, we shall now begin the discussion of the arithmetic operations among X registers (opcodes 10-47) with the Boolean instructions, the basic logical operations -- complement (.NOT.), logical sum (.OR.), logical product (.AND.), logical difference (exclusive or) -- and the moving of a number from one register to the other. Logical operations are done on a bit-by-bit basis; that is, the value of bit i of the result is determined by the value(s) of bit i in the operand(s).
The Boolean instructions are organized into two groups of four instructions. There are four basic operations: logical sum, product, difference and transmit. The transmit operation, the only unary operation (one operand) of the group, simply takes the contents of the one register and transfers it to another. In the first group of four, neither operand is complemented before the operation; in the second group, one of the operands is complemented before the operation.

With this introduction, the eight Boolean instructions will now be enumerated. All are 15 bit instructions, specifying two operand X registers and one result X register:

```
<table>
<thead>
<tr>
<th>opcode</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
```

In the unary operations, one of the two operand designators (j or k) is ignored. Since these are bit-by-bit operations, they may be described precisely by giving the result for each possible bit combination in the operands. Sample operands and results (in binary), including all possible bit combinations, are given below for each instruction:

opcode 10: BXi Xj Transmit Xj to Xi

Transfers a 60-bit word from Xj to Xi:

- if \(X_j = 10 \) (base2),
- then \(X_i = 10 \) (base2)

opcode 11: BXi Xj*Xk Logical Product of Xj and Xk to Xi

Bit in Xi is 1 when corresponding bits in both Xj AND Xk are 1:

- if \(X_j = 1010 \)
 \(X_k = 1100 \)
- then \(X_i = 1000 \)

opcode 12: BXi Xj+Xk Logical Sum of Xj and Xk to Xi

Bit in Xi is 1 when corresponding bit in either Xj OR Xk is 1:

- if \(X_j = 1010 \)
 \(X_k = 1100 \)
- then \(X_i = 1110 \)
CENTRAL PROCESSOR INSTRUCTION SET

opcode 13: BXi Xj-Xk Logical Difference of Xj and Xk to Xi

Bit in Xi is 1 when corresponding bits in Xj and Xk are unlike (exclusive OR):

if Xj = 1010
 Xk = 1100
then Xi = 0110

opcode 14: BXi -Xk Transmit the complement of Xk to Xi

Puts in Xi the complement of the contents of Xk:

if Xk = 10
then Xi = 01

opcode 15: BXi -Xk*Xj Logical product of Xj and complement of Xk to Xi

Bit in Xi is 1 when corresponding bits in both Xj AND the complement of Xk are 1:

if Xj = 1010
 Xk = 1100 comp. of Xk = 0011
then Xi = 0010

opcode 16: BXi -Xk+Xj Logical Sum of Xj and complement of Xk to Xi

Bit in Xi is 1 when corresponding bit in either Xj OR the complement of Xk is 1:

if Xj = 1010
 Xk = 1100 comp. of Xk = 0011
then Xi = 1011

opcode 17: BXi -Xk-Xj Logical Difference of Xj and complement of Xk to Xi

Bit in Xi is 1 when corresponding bits in Xj and Xk are the same:
The mnemonics are, as usual, straightforward: the letter "B" followed by the result register in the opcode field, the operands and operators in the address field. Note that the minus sign indicating complementation must appear first (BXi Xj*-Xk is not allowed) and that this minus sign signifies that only the immediately following register is complemented, not the entire quantity.

About the simplest possible subroutine is a transmit subroutine, which takes the contents of the first argument and puts it in the second:

```
IDENT   XMIT
ENTRY   XMIT
XMIT BSS 1      ENTRY LINE
SA2     A1+1   X2=ADDRESS OF SECOND ARGUMENT
SA1     X1      X1=FIRST ARGUMENT
BX6     X1      X6=FIRST ARGUMENT
SA6     X2      STORE INTO SECOND ARGUMENT ADDRESS
EQ       XMIT
END
```

This routine is very similar to our earlier routine "SET", but this one transmits the entire 60 bit value, not just the low 18 bits. This routine is thus suitable for transferring any single-word datum, including integer and floating-point numbers.

A variation of our "SUM" function provides our second example. This function will take the 60 bit logical sum of the two arguments:

```
IDENT   LSUM
ENTRY   LSUM
LSUM BSS 1
SA2     A1+1   X2=ADDRESS OF SECOND ARGUMENT
SA1     X1      X1=FIRST ARGUMENT
SA2     X2      X2=SECOND ARGUMENT
BX6     X1+X2   X6=ARG1 .OR. ARG2
EQ       LSUM
END
```
Then the statement
\[I = \text{LSIM}(J, 177B) \]

where \(J = 140B \) will set \(I \) to \(177B \).

Several additional examples will be forthcoming when we discuss bit and character manipulation.

3.9 INTEGER ARITHMETIC: ADDITION AND SUBTRACTION

Integer addition and subtraction are about the simplest of the arithmetic instructions. These instructions form the 60 bit one's complement sum and difference of the contents of two X registers. Because these instructions do 60 bit arithmetic, they are termed long add instructions (in contrast to the floating operations, which we shall discuss shortly). The two instructions are:

\[
\begin{array}{c|c|c|c|c}
\text{IXI} & \text{Xj+Xk} & \text{Integer sum of } X_j \text{ and } X_k \text{ to } X_i \\
\hline
3 & 5 & i & j & k \\
14 & 8 & 5 & 2 & 0 \\
\end{array}
\]

(15 bits)

\[
\begin{array}{c|c|c|c|c}
\text{IXI} & \text{Xj-Xk} & \text{Integer difference of } X_j \text{ and } X_k \text{ to } X_i \\
\hline
3 & 7 & i & j & k \\
14 & 8 & 5 & 2 & 0 \\
\end{array}
\]

(15 bits)

As the characteristic mnemonic letter for set instructions is "S", and for Boolean is "B", for integer operations it is "I".

As a simple example, we may conjure up a routine which takes the (60 bit) difference of two integers. This function of two arguments is similar to several we have written before:
The original 6000 and 7000 series machines were not provided with any single instructions for doing integer multiplication and division. These operations were performed instead by a sequence of instructions using floating multiplication and division. The absence of hardware integer multiplication and division is attributable to the basic objective in 6600 design of high speed scientific calculation. Since scientific computation is characterized by a preponderance of floating point rather than integer arithmetic, it was decided to have the integer operations be somewhat slower and utilize the very-high-speed floating point capabilities. Recent machines have incorporated a slight modification of the arithmetic unit to permit integer multiplication in a single instruction; this change has by now also been added to most existing 6000 series machines. The sequences of instructions for integer multiplication and division on both old and new machines will be described in section 3.15.
CENTRAL PROCESSOR INSTRUCTION SET

3.10 FLOATING POINT ADDITION AND SUBTRACTION

Consider the problem of adding, using scientific notation,

\[
3.40 \times 10^{**3} \\
+ 1.77 \times 10^{**2}
\]

The operation involves two steps: (1) changing one of the numbers (say, the one with the smaller exponent) so that both have the same exponent and (2) adding the coefficients, affixing to the result the common exponent of the addends:

\[
3.40 \times 10^{**3} = 3.40 \times 10^{**3} \\
1.77 \times 10^{**2} = .177 \times 10^{**3}
\]

\[

3.577 \times 10^{**3}
\]

If we are retaining three digits of accuracy, we can either truncate the fraction, leaving 3.57*10**3, or, more accurately, round the fraction, yielding 3.58*10**3. To complicate the situation somewhat, let us consider

\[
1.21 \times 10^{**3} \\
- 7.82 \times 10^{**2}
\]

By the same two operations as above, we obtain

\[
1.21 \times 10^{**3} = 1.21 \times 10^{**3} \\
-7.82 \times 10^{**2} = -.782 \times 10^{**3}
\]

\[

.428 \times 10^{**3}
\]

But .428*10**3 is no longer in normal form, i.e., does not have one significant digit to the left of the decimal point. Hence we must include one final step, normalization, to obtain our result in normal form, 4.28*10**2.

The process we have illustrated in decimal scientific notation is little different from that used for adding floating point numbers in the computer. First a floating add is done to add the two numbers (steps (1) and (2) above), and then a normalize is performed to get the result back into normal form. A special 98 bit register, known as an accumulator, is used to perform the shifting (to equalize coefficients), and the actual addition. A 98 bit register makes it possible to obtain a double precision result, with 96 bit accuracy. Just as our three digit operands may yield a sum containing more than three digits, 48 bit addends may yield a more than 48 bit sum.
As a result of the addition of two 60 bit floating point numbers on the machine, three different numbers may be obtained: a floating sum, a round floating sum, and a floating double precision sum. The double precision sum gives the low order 48 bits out of the accumulator; as its name implies, it is used for double precision arithmetic. The other two sums both give the most significant 48 bits of the accumulator, and either can be used when only a single precision (48 bit) result is desired. The floating sum just chops out 48 bits from the accumulator, whereas the round sum includes a rounding procedure which yields a slightly better result.

To clarify this, consider the addition (all numbers in octal)

\[4710 \ 0010 \ 0000 \ 0210. \ * \ 2^{3} \]
\[6163 \ 5050 \ 0000 \ 0421. \ * \ 2^{(-33)} \]

These are essentially 6600 floating point numbers, with a 48 bit integer coefficient and binary exponent, except that here a true, rather than biased, exponent is given. Schematically, the addition is done on the 6600 as follows: first, the addend with the smaller exponent is put in the accumulator

\[0 \ 6163 \ 5050 \ 0000 \ 0421. \ 0000 \ 0000 \ 0000 \ 0000 \ * \ 2^{(-33)} \]

where a decimal point has been inserted to indicate the assumed binary point between bits 47 and 48. The leftmost zero represents only two bits; the high-order bit, bit 97, is the sign bit, while the next bit is there to prevent possible error in the case of overflow. The coefficient is now shifted and the exponent correspondingly increased until it equals that of the other operand:

\[0 \ 0000 \ 0000 \ 0061 \ 6350. \ 5000 \ 0004 \ 2100 \ 0000 \ * \ 2^{3} \]

The second operand is now added in:

\[0 \ 0000 \ 0000 \ 0061 \ 6350. \ 5000 \ 0004 \ 2100 \ 0000 \ * \ 2^{3} \]
\[+ \ 4710 \ 0010 \ 0000 \ 0210. \]

\[0 \ 4710 \ 0010 \ 0061 \ 6560. \ 5000 \ 0004 \ 2100 \ 0000 \ * \ 2^{3} \]

|\(\text{<-- floating sum \(\rightarrow)}\)\] floating double
|\(\text{<-- precision sum \(\rightarrow)}\)\]
The most significant part of the sum is given by the floating sum, 4710 0010 0061 6560*2**3. The double precision sum gives the least significant part, i.e., that number which, when added to the floating sum, gives the sum to 96 bit accuracy, 5000 0004 2100 0000 * 2**(-55). Note that, because in the accumulator the binary point is assumed at the left of these 48 bits, the exponent must be reduced by 48 (base 10) = 60 (base 8) when the DP sum is stored as a separate floating point number, with the assumed binary point on the right.

The rounding procedure in the floating add unit is different from the usual method you know for rounding, though the effect is almost the same. The "usual method" for calculating a round floating sum would be to increment the integer part (bits 48-95) by one if the fractional part (bits 0-47) were greater than one-half, i.e., if bit 47 were a one. The add unit instead puts a one bit on the right end of the operands (if both are normalized); in our example the addition would become

```
          0 0000 0000 0061 6350. 5000 0004 2140 0000 * 2**3
+ 4710 0010 0000 0210. 4                       * 2**3
-----------------------------------------------
          0 4710 0010 0061 6561. 1000 0004 2140 0000 * 2**3
```

Observe that the round sum, 4710 0010 0061 6561*2**3, is the same result we would have obtained by applying the "usual method" of rounding to our original 98 bit sum. This is because the effect of the actual rounding procedure is to add one-half to the sum. This is true even if the exponents of both operands are the same, since then the binary point must be shifted one bit left. For example, the round sum of 5:00 0000 5200 0000*2**10 with itself,

```
      5100 0000 5200 0000. 4000 0000 0000 0000 * 2**10
+ 5100 0000 5200 0000. 4                       * 2**10
-----------------------------------------------
      1 2200 0001 2400 0001. 0000 0000 0000 0000 * 2**10
```

Inserting bits before the addition is a simpler and faster procedure than adding one to the coefficient at the end, which may require several carries.
CENTRAL PROCESSOR INSTRUCTION SET

When calculating a round sum, only the upper 48 bits are usable; the least significant 48 are meaningless. Conversely, when we wish to recover 96 bits, we must use the floating and DP sums, and not the round sum. Thus, the floating and DP sums are essential for double precision work, while the round sum is preferable for single precision, since it is slightly more accurate. (For reasons of tradition, however, most compilers, including those for the 6600, generate floating rather than round floating arithmetic instructions.)

With this we are ready to enumerate the floating point addition and subtraction instructions.

FXi Xj+Xk Floating sum of Xj and Xk is Xi
\[
\begin{array}{cccc}
3 & 0 & i & j \\
14 & 8 & 5 & 2 & 0
\end{array}
\] (15 bits)

FXi Xj−Xk Floating difference of Xj and Xk to Xi
\[
\begin{array}{cccc}
3 & 1 & i & j \\
\end{array}
\] (15 bits)

DXi Xj+Xk Floating DP sum of Xj and Xk to Xi
\[
\begin{array}{cccc}
3 & 2 & i & j \\
\end{array}
\] (15 bits)

DXi Xj−Xk Floating DP difference of Xj and Xk to Xi
\[
\begin{array}{cccc}
3 & 3 & i & j \\
\end{array}
\] (15 bits)

RXi Xj+Xk Round floating sum of Xj and Xk to Xi
\[
\begin{array}{cccc}
3 & 4 & i & j \\
\end{array}
\] (15 bits)
CENTRAL PROCESSOR INSTRUCTION SET

RXi Xj-Xk Round floating difference of Xj and Xk to Xi

\[
\begin{array}{cccc}
3 & 5 & 1 & j & k \\
\end{array}
\]

As is evident, the characteristic letters for floating, DP, and round arithmetic are F, D, and R; from this you can probably already guess the mnemonics for the multiply and divide instructions.

As the preceding discussion suggested, we will require one additional instruction: the normalize instruction, which puts a number into normalized form. That is, the coefficient from the operand is shifted left bit-by-bit until the most significant bit is in bit 47; positions vacated on the right are filled with zeros (binary ones if the number is negative). For each bit that the coefficient is shifted, the exponent is decremented by one, so the value of the number is unchanged. The normalized number is put in the X result register; in addition, the number of shifts required for normalization is left in a B result register. Thus, this is one of the few (3) 6600 instructions with only one operand and two results. The normalize instruction is the first of the so-called "shift unit instructions" (opcodes 20-27) which we shall consider:

NXi Bj, Xk Normalize Xk into Xi and Bj

\[
\begin{array}{cccc}
2 & 4 & 1 & j & k \\
14 & 8 & 5 & 2 & 0 \\
\end{array}
\]

For the sake of completeness, the round and normalize instruction will also be mentioned. This instruction adds 1/2 to the coefficient before normalizing; i.e., for positive numbers, a 1 bit is attached to the right of the binary point before shifting. It has the totally nonsensical mnemonic ZX:

ZXi Bj, Xk Round and normalize Xk into Xi and Bj

\[
\begin{array}{cccc}
2 & 5 & i & j & k \\
\end{array}
\]

(15 bits)
CENTRAL PROCESSOR INSTRUCTION SET

For example, if
\[X2 = 1753\ 0005\ 7410\ 2121\ 6050 \]

the instruction \(\text{NX3 B3,X2} \) will set
\[B3 = 000011\ \ X3 = 1742\ 5741\ 0212\ 1605\ 0000 \]

while \(\text{ZX3 B3,X2} \) results in
\[B3 = 000011\ \ X3 = 1742\ 5741\ 0212\ 1605\ 0400 \]

Lest you fear that normalizing a zero coefficient puts the machine in some sort of infinite loop, let me inform you that the instruction ends with the shift count \((b_j) = 48 \) (base 10), and \(x_i \) cleared to zero. This is important in testing a floating point number for zero, using the \(ZR\ x_i,k \) instruction. In general, subtracting a number from itself will yield a result with a zero coefficient but not a zero exponent, so the result will fail the \(ZR \) test, which examines all sixty bits. After normalization, however, a result with a coefficient of zero will become all zero, so the branch will occur if a \(ZR \) test is made. To round out the picture, one may note that a \(ZX \) (rounded normalize) of a zero coefficient will reduce the exponent by 48 and leave a round bit in bit 47.

In the following examples we will use only the unrounded normalize, since we will be doing round floating arithmetic. Performing a rounded normalize on the result of a round floating operation would have the undesirable effect of adding a round bit in twice.

As a trivial example, we can modify the \(\text{IDIM} \) function coded earlier for floating point numbers (i.e., the FORTRAN \(\text{ADIM} \) function). The only change is in the subtraction:

<table>
<thead>
<tr>
<th>IDENT</th>
<th>ADIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>ADIM</td>
</tr>
<tr>
<td>ADDM BSS</td>
<td>1 ENTRY LINE</td>
</tr>
<tr>
<td>SA2</td>
<td>A1+1 \ X2=ADDRESS OF SECOND ARGUMENT</td>
</tr>
<tr>
<td>SA1</td>
<td>X1 \ X1=FIRST ARGUMENT</td>
</tr>
<tr>
<td>SA2</td>
<td>X2 \ X2=SECOND ARGUMENT</td>
</tr>
<tr>
<td>RX6</td>
<td>X1-X2 \ X6=ARG1-ARG2</td>
</tr>
<tr>
<td>NX6</td>
<td>B0,X6</td>
</tr>
<tr>
<td>PL</td>
<td>X6,ADIM \ IF (ARG1-ARG2).GE.0,RETURN</td>
</tr>
<tr>
<td>SX6</td>
<td>B0 \ ELSE SET RESULT=0</td>
</tr>
<tr>
<td>EQ</td>
<td>ADIM \ AND RETURN</td>
</tr>
<tr>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

73
Note that we had no use for the shift count from the normalize instruction, so we designated B0 for the result (B0, however, is unaffected — it is always zero); this could have been written NX6 X6, as B0 is assumed if no B register is specified. If the normalize were omitted, the routine would be unacceptable, since in our coding we shall always assume that floating point operands (which are results of previous operations) are normalized. Hence, every floating add or subtract must be followed by a normalize instruction.

As a slightly more complicated example, let us consider the function whose value is the trace — the sum of the diagonal elements — of a square matrix of arbitrary size. In FORTRAN this would be

```
FUNCTION TRACE(ARRAY,N)
DIMENSION ARRAY(N,N)
TRACE = 0
DO 10 I = 1,N
   10 TRACE = TRACE + ARRAY(I,I)
RETURN
END
```

Now observe that the address of ARRAY(I,I) = address of the first word of ARRAY+(I-1)+N*(I-1) = address of the first word of ARRAY+(N+1)*(I-1). Since in memory the N*N array is stored as linear array of N*N elements (A(1,1), A(2,1), ..., A(N,1), A(1,2), A(2,2), ..., A(N,N)), it is simpler to manipulate ARRAY as a linear array when possible. In this case, it is particularly simple: the DO loop in effect goes through ARRAY in steps of N+1. Thus, to load the first element of ARRAY we set an A register to ARRAY (the value of an array tag is the first location of the array). To load subsequent array entries, we need merely increment the A register by N+1. In addition, we will have to keep a count so that the assembly language routine, like the DO loop, will know when its job is finished. Thus, in COMPASS, our function is
CENTRAL PROCESSOR INSTRUCTION SET

<table>
<thead>
<tr>
<th>IDENT</th>
<th>TRACED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>TRACED</td>
</tr>
</tbody>
</table>

TRACE
- BSS: 1
- SA2: A1+1
- SA2: X2
 - **X2** = DIMENSION OF ARRAY
- SB4: X2+1
 - **B4** = DIMENSION + 1
- SA1: X1
 - **A1** = STARTING ADDRESS OF ARRAY
- BX6: X1
 - **X6** = FIRST ARRAY ELEMENT
- SB3: 1
 - INITIALIZE COUNTER

LOOP
- SA1: A1+B4
 - GET NEXT ARRAY ELEMENT
- RX6: X1+X6
- NX6: X6
 - ADD INTO SUM
- SB3: B3+1
 - INCREMENT COUNTER
- LT: B3, B4, LOOP
 - IF NOT THROUGH, LOOP
- EQ: TRACE
 - ELSE RETURN
- END

It is unlikely that any but the best optimizing compilers would be able to produce such short code from the FORTRAN version of the routine. It is not so difficult to realize that it is more efficient to accumulate the sum in X6, since the result will have to be put in X6 before returning; on the other hand, it is a very shrewd compiler which sees the trick with an increment of N+1.
3.11 FLOATING POINT MULTIPLICATION

Multiplying two floating point numbers involves multiplying coefficients and adding exponents, in decimal:

\[
\begin{align*}
3.1 & \times 10^{2} \\
* & 2.2 \times 10^{7} \\
\hline
6.82 & \times 10^{9}
\end{align*}
\]

or in octal:

\[
\begin{align*}
4200 & 0000 0000 0000. * 2^{3} \\
* & 6010 0000 0000 0000. * 2^{6} \\
\hline
3144200000000000 & 0000 0000 0000 0000. * 2^{11}
\end{align*}
\]

Multiplying together two-digit decimal coefficients yields a three or four digit result (3.1 * 2.2 = 6.82; 6.4 * 6.4 = 40.96); similarly, the product of two 48 bit coefficients is a 95 or 96 bit result. The multiply instructions on the 6600 automatically adjust a 95 bit result coefficient to get a normalized 96 bit quantity, shifting the coefficient left one bit and reducing the exponent by one; for example, the result above would become

\[
6310400000000000 0000000000000000. * 2^{10}
\]

Thus if the two operands in a multiply instruction are both normalized, and so have 48 bit coefficients, the result will have a normalized 96 bit coefficient; no additional normalize instruction is required.

Just as there are three types of floating point addition and subtraction, there are three types of floating point multiplication: floating, round floating, and double precision floating. Since each instruction can only return one floating point number, with 48 bits of coefficient, two instructions, the floating and DP multiply, are needed to get out all 96 bits:

\[
6310400000000000 0000000000000000. * 2^{10}
\]

floating product DP product

So, in this example, the floating product is 6331040000000000 * 2^{10}; right? Wrong. At the end of a multiply, the binary point is all the way at the right of the 96 bits; when we put the most
significant 48 bits into the result register, the assumed binary point is at the right of those 48 bits -- in other words, it has been shifted 48 bits to the left. So, to have the floating product be the most significant half of the product, we have to increase the exponent put in the floating result by 48 (base 10) = 60 (base 8). On the other hand, no change is need to get the exponent of the DP result, since the assumed binary point starts out to the right of those 48 bits. Thus the two products are:

floating product = 6310400000000000 * 2**70
DP product = 0000000000000000 * 2**10

their sum is the product with 96 bit precision. (Don't get the impression, incidentally, that the DP product is generally zero; this is only a consequence of the numbers chosen).

The round multiply gives a rounded version of the most significant half of the product -- a 48 bit coefficient "good to the last bit". As before, the rounded result is generally preferable for single precision, while the floating and DP instructions are needed to recover a double precision result.

The three instructions occupy opcodes 40-42:

FXi Xj*Xk Floating product of Xj and Xk to Xi
\[
\begin{array}{cccc}
4 & 0 & i & j \\
14 & 8 & 5 & 2 & 0
\end{array}
\] (15 bits)

RXi Xj*Xk Round floating product of Xj and Xk to Xi
\[
\begin{array}{cccc}
4 & 1 & i & j \\
14 & 8 & 5 & 2 & 0
\end{array}
\] (15 bits)

DXi Xj*Xk Floating DP product of Xj and Xk to Xi
\[
\begin{array}{cccc}
4 & 2 & i & j \\
14 & 8 & 5 & 2 & 0
\end{array}
\] (15 bits)

The example we shall consider to illustrate the multiply instructions is considerably more complicated than our previous subroutines. This routine will compute the product of two matrices; in FORTRAN it would be

77
SUBROUTINE MATMU(A,B,C,L,M,N)
C
C MULTIPLIES MATRIX A, DIMENSIONS L*M,
C AND MATRIX B, DIMENSIONS M*N, LEAVES
C RESULT IN MATRIX C, DIMENSIONS L*N
C
DIMENSION A(L,M), B(M,N), C(L,N)
DO 20 I = 1,L
DO 20 K = 1,N
SUM = 0.
DO 10 J = 1,M
10 SUM = SUM + A(I,J)*B(J,K)
20 C(I,K) = SUM
RETURN
END

This example is important because it occurs often in practical calculations, and can consume a lot of computing time: the innermost DO loop is executed L*M*N times. For example, if the matrices were all 100*100 (quite large, but still easily within the capacity of memory) the inner loop would be executed 1,000,000 times.

We will try to write an optimized matrix multiply to the extent we have learned so far, i.e., minimize the number of instructions to be executed. Of course, since the inner loops are executed much more often than the initialization code (which is executed once), we shall be much more concerned about saving instructions in the loops. (To the ambitious student, may I suggest that, to get the most out of the following explanation, you code -- and perhaps even try to run -- a MATMU of your own in assembly language before reading on.)

As a first step let us consider what we have to do in the innermost loop. The biggest problem seems to be getting A(I,J) and B(J,K):

address of A(I,J) = address of A + (I-1) + L*(J-1)
address of B(J,K) = address of B + (J-1) + M*(K-1)

We can note that it would make more sense to keep indices I' = I-1, J' = J-1, and K' = K-1; then

address of A(I,J) = address of A + I' + J'*L
address of B(J,K) = address of B + J' + K'*M

But we don't know how to do those integer multiplications yet, and anyway feel that there must be some better way than doing
these multiplications perhaps a million times. Taking a hint from our TRACE function, we suspect that we can simply increment the relevant \(A \) registers each time through the inner loop. And indeed, each iteration of the loop advances the \(A \) matrix address by \(L \) and the \(B \) matrix address by \(I \).

With this thought in mind, we can begin by constructing the inner loop. We may assume for the moment that the loop indices and limits will be kept in \(B \) registers, as usual; we can change this later if we get into difficulty. So suppose we have \(I' \) in B2, \(J' \) in B3, \(K' \) in B4, \(L \) in B5, \(M \) in B6, and \(N \) in B7. Let's also suppose that we are loading \(A \) and \(B \) matrix elements into \(X1 \) and \(X2 \) respectively, and accumulating the sum in \(X6 \). Then the innermost loop has to (1) advance \(A1 \) by \(L \) and \(A2 \) by \(1 \), (2) multiply elements of matrices \(A \) and \(B \) and add into sum, and (3) increment \(J' \) and loop if not done:

\[
\begin{align*}
\text{LUP1} & \quad \text{SA1} & A1+B5 & X1=A(I,J) \\
& \quad \text{SA2} & A2+1 & X2=B(J,K) \\
& \quad \text{RX1} & X1*X2 & X1=A(I,J)*B(J,K) \\
& \quad \text{RX6} & X1+X6 & \\
& \quad \text{NX6} & X6 & \text{ADD INTO SUM} \\
& \quad \text{SB3} & B3+1 & J'=J'+1 \\
& \quad \text{LT} & B3,B6,LUP1 & \text{IF(J', LT .M), LOOP}
\end{align*}
\]

Note that the loop is done when \(J \) exceeds \(M \), and so when \(J' \) is equal to \(M \).

Having succeeded in coding the innermost loop in a minimum of instructions (each operation is essential to the loop), let us see whether we can do the same for the outer loops. Instructions are needed right before the inner loop to initialize the sum \((X6) \) and after the loop to store the result. Now the question arises, should the \(I \) or the \(K \) loop be outer-most? Though the differences are small, I have selected the \(I \) loop to be in the middle, and the \(K \) loop to be on the outside. Consider the store instruction which follows the inner loop: previous experience indicates that we can compute the address for the store most simply if we find a constant increment by which to advance the store address throughout the loop. This is possible, clearly, only if the address is incremented by one each time; since address of \(C(I,K) \) is address of \(C + I' + K'*L \), this means that we increment \(I' \) in the inner loop, and \(K' \) in the outer loop (thus obtaining the sequence \(C(1,1), \ldots, C(L,1), C(1,2), \ldots, C(1,3), \ldots, C(L,N) \)). Since each element of matrices \(A \) and \(B \) is accessed several times, it would not have been possible to reference either \(A \) or \(B \) simply by continuously incrementing an \(A \) register. The outcome of all this is that the store operation \((C(I,K) = \text{SUM}) \) will become
CENTRAL PROCESSOR INSTRUCTION SET

SA6 A6+1 STORE IN \(C(I,K)\)

The other tasks in the outer loops are to (1) initialize \(A1\) and \(A2\) for the inner loop and (2) initialize the sum \(X6\). From the FORTRAN routine we might suspect that the latter becomes SX6 B0. Some thought, however, should indicate that it would be faster to initialize \(X6\) to \(A(I(1))*B(I,K)\), since it saves one iteration of the inner loop. (In exchange for this slight increase in efficiency, however, we obtain a routine which will not work for \(M=1\).) And, at the same time, \(A(I,1)\) and \(B(I,K)\) are the correct initial addresses in \(A1\) and \(A2\) for starting the inner loop. So the only remaining problem is getting the addresses of \(A(I,1)\) and \(B(I,K)\); we decided before that we can't do this just by incrementing the previous contents of \(A1\) or \(A2\) (unless we are willing to increment/decrement more than once). But \(A(I,1)\) is simple, since address of \(A(I,1) = \) address of \(A+I = B1+B2\), if we keep the address of \(A\) in \(B1\). Address of \(B(I,K)\) = address of \(B+K*M\) is a bit more work, but we can manage by keeping the address of \(B\) in some register and adding \(M\) to the register each time through the \(K\) loop. Having run out of \(B\) registers, let's use, say, \(X5\).

If you have been able to wade through all this, you will realize that the code before the inner loop is

\[\begin{align*}
\text{LUP2} & \quad \text{SA1} \quad B1+B2 \quad X1=A(I,1) \\
& \quad \text{SA2} \quad X5 \quad X2=B(1,K) \\
& \quad \text{RX6} \quad X1*X2 \quad \text{INITIALIZE SUM} \\
& \quad \text{SB3} \quad 1 \quad J'=1
\end{align*}\]

while at the end of the \(I\) loop we have to perform the store, increment and test \(I'\):

\[\begin{align*}
& \quad \text{SA6} \quad A6+1 \quad \text{STORE SUM INTO } C(I<K) \\
& \quad \text{SB2} \quad B2+1 \quad I'=I'+1 \\
& \quad \text{LT} \quad B2,B5,\text{LUP2} \quad \text{IF } I'.LT.L, \text{ LOOP}
\end{align*}\]

Our outermost \((K)\) loop doesn't have to do very much: at the beginning, initialize \(I'\) for the middle loop, at the end increment and test \(K'\) -- and advance \(X5\), which should have the address of \(B+K*M\):

\[\begin{align*}
& \quad \text{LUP3} \quad \text{SB2} \quad B0 \quad I'=0 \\
& \quad \quad \& \quad \ldots \\
& \quad \quad \& \quad \quad \text{SB4} \quad B4+1 \quad K'=K'+1 \\
& \quad \quad \& \quad \quad \text{SX5} \quad X5+B6 \quad X5=X5+M \\
& \quad \quad \& \quad \quad \text{LT} \quad B4,B7,\text{LUP3} \quad \text{IF } K'.LT.N, \text{ LOOP}
\end{align*}\]
CENTRAL PROCESSOR INSTRUCTION SET

Since you are by now probably thoroughly confused as to how all these jig-saw puzzle pieces fit together, let me put all the loops together

LUP3 SB2	B0	I' = 0
LUP2 SA1	B1+B2	X1=A(I,1)
SA2	X5	X2=B(I,K)
RX6	X1*X2	INITIALIZE SUM
SB3	1	J' = 1
LUP1 SA1	A1+B5	X1=A(I,J)
SA2	A2+1	X2=B(J,K)
RX1	X1*X2	X1=A(I,J)*B(J,K)
RX6	X1+X6	ADD INTO SUM
NX6	X6	
SB3	B3+1	J'=J'+1
LT	B3,B6,LUP1	IF(J'<LT,M), LOOP1
SA6	A6+1	C(I,K)=SUM
SB2	B2+1	I'=I'+1
LT	B2,B5,LUP2	IF(I'<LT,L), LOOP2
SB4	B4+1	K'=K'+1
SX5	X5+B6	X5=X5+M
LT	B4,B7,LUP3	IF(K'<LT,N), LOOP3

All that's left now is the initialization of registers. L, M, and N go into B5, B6, and B7.

SA2	A1+3	X2=ADDRESS OF L
SA3	A1+4	X3=ADDRESS OF M
SA4	A1+5	X4=ADDRESS OF N
SA2	X2	X2=L
SA3	X3	X3=M
SA4	X4	X4=N
SB5	X2	B5=L
SB6	X3	B6=M
SB7	X4	B7=N

the address of matrix A goes into B1 and the address of matrix B goes into X5

| SB1 | X1 | B1=ADDRESS OF A MATRIX |
| SA5 | A1+1 | X5=ADDRESS OF B MATRIX |

and K' is initialized to zero,

| SB4 | B0 | K' = 0 |

Finally, we have to set A6 to one less than the address of C
CENTRAL PROCESSOR INSTRUCTION SET

\begin{verbatim}
 SA1 A1+2 XI=ADDRESS OF C MATRIX
 SA6 'XI-:
\end{verbatim}

This unfortunately clobbers whatever was in that location before, so we need the sequence

\begin{verbatim}
 SA1 A1+2 XI=ADDRESS OF C MATRIX
 SA1 XI-:
 #X6 XI
 SA6 A1
\end{verbatim}

to preserve whatever was in that location.

With a sigh of relief we can now tack on the usual beginning and ending for our routine (which appears on the next page).

All this gory detail has been presented to give you some idea of what is involved in coding an efficient routine. Of course, things don't usually go as smoothly as was indicated here—a half dozen revisions were needed before I came upon the efficient code developed here. On the other hand, such extreme care in saving instructions is not generally required in assembly language coding.

It is worth remarking here that it rarely makes any sense to write really inefficient assembly language code. If one doesn't bother to write efficient machine code, one might as well program in FORTRAN or some other high-level language to begin with, and spare oneself the problems of debugging assembly language programs. Similarly, it doesn't pay to write program sections that will be executed only a few times in assembly language, since the time you could save by producing highly optimized code would be infinitesimal. An efficient programmer will resort to machine language coding only when it is worthwhile — when the potential time saving justifies the effort.
CENTRAL PROCESSOR INSTRUCTION SET

IDENT MATMU
**

* * MATRIX MULTIPLY ROUTINE *
* CALLING SEQUENCE: CALL MATMU (A,B,C,L,M,N) *
* MULTIPLES MATRIX A, DIMENSIONS L*M *
* AND MATRIX B, DIMENSIONS M*N, LEAVES RESULT *
* IN MATRIX C, DIMENSIONS L*N *
* *
**

ENTRY MATMU
MATMU BSS 1
SA2 A1+3 X2=ADDRESS OF L
SA2 A1+4 X2=ADDRESS OF M
SA3 A1+5 X4=ADDRESS OF N
SA2 X2 X2=L
SA3 X3 X3=M
SA4 X4 X4=N
SB5 X2 B5=L
SB6 X3 B6=M
SB7 X4 B7=N
SB1 X1 B1=ADDRESS OF A MATRIX
SA5 A1+1 X5=ADDRESS OF B MATRIX
SB4 B0 K'=0
SA1 A1+2 X1=ADDRESS OF C MATRIX
SA1 X1-1 INITIALIZE A6
BX6 X1 WITHOUT ClobberING
SA6 A1 LOCATION
LUP3 SB2 B0
LUP2 SA1 B1+B2
SA2 X5 X2=B(1,K)
RX6 X1*X2
SB3 1
LUP1 SA1 A1+B5
SA2 A2+1
RX1 X1*X2
RX6 X1+X6
NX6 X6
SB3 B3+1
LT B3,B6,LUP1
SA6 A6+1
SB2 B2+1
LT B2,B5,LUP2
SB4 B4+1
SX5 X5+B6
LT B4,B7,LUP3
EQ MATMU
END

83
3.12 FLOATING POINT DIVISION

This section, covering the two floating point divide instructions, completes our discussion of the arithmetic instructions. A floating point division involves dividing coefficients and subtracting exponents; in decimal:

\[
\begin{align*}
4.5 \times 10^{+8} &= 45.0 \times 10^{+7} \\
9.0 \times 10^{+2} &= 9.0 \times 10^{+2} \\
\hline
&= 5.0 \times 10^{+5}
\end{align*}
\]

In octal it is similarly necessary to increase the coefficient and correspondingly reduce the exponent before dividing:

\[
\begin{align*}
63104000 &\quad 00000000 \quad \ast \quad 2^{+70} \\
60100000 &\quad 00000000 \quad \ast \quad 2^{+6}
\end{align*}
\]

is changed to

\[
\begin{align*}
631044000 &\quad 00000000 \quad 00000000 \quad 00000000 \quad \ast \quad 2^{+10} \\
60100000 &\quad 00000000 \quad \ast \quad 2^{+6}
\end{align*}
\]

\[
\begin{align*}
10400000 &\quad 00000000 \quad \ast \quad 2^{+2}
\end{align*}
\]

and, converting the coefficient to 48 bit form,

\[
= 42000000 \quad 00000000 \quad \ast \quad 2^{+3}
\]

If the operands are normalized, the exponent of the result = (exponent of dividend) - (exponent of divisor) - 57 (base 8) or 60 (base 8), depending on whether a one bit shift is required at the end of the operation, as it was above. Since the division process, as outlined above, yields a result with a 48 bit coefficient, there are only floating and round floating instructions. Double precision division is nonetheless possible, with a rather involved sequence of instructions. In the event of an inexact quotient (non-zero remainder), the floating divide gives a truncated quotient (the result of the remainder is ignored), while the round divide give an (approximately) rounded result.

The two instructions are:

\[
\begin{array}{cccccc}
\text{FXi} & \text{XJ/Xk} & \text{Floating} & \text{Divide} & \text{XJ by Xk to Xi} \\
4 & 4 & 1 & j & k \\
\hline
14 & 8 & 5 & 2 & 0
\end{array}
\]

(15 bits)
CENTRAL PROCESSOR INSTRUCTION SET

RXi XJ/Xk Round floating divide Xj by Xk to Xi

(15 bits)

As the example above indicated, both instructions leave normalized results when both the dividend and divisor are normalized. On the other hand, if the divisor is not normalized the quotient computed may be wrong. In consequence, operands in these instructions should be normalized to insure correct results.

As an application of the floating divide, let us study a simple version of the Newton-Raphson square root:

FUNCTION SQRT(X)
 IF (X.LT.0.) GO TO 2
 SQRT = X
 IF (X.EQ.0.) RETURN
 1
 SQRT = .5*(SQRT + X/SQRT)
 IF (ABS(SQRT**2 - X) .GT. X*1.E-12) GO TO 1
 RETURN
 2
 SQRT = 0.
 RETURN
END

Our criterion for terminating the iteration is that SQRT**2 equals X to a precision of 1 part in 10**-12. We can rewrite the IF as:

IF (SQRT**2 .LT. X - X*1.E-12) GO TO 1
IF (SQRT**2 .GT. X + X*1.E-12) GO TO 1

This permits us to take the calculation of the limits out of the loop:

FUNCTION SQRT(X)
 IF (X.LT.0.) GO TO 2
 SQRT = X
 IF (X.EQ.0.) RETURN
 SLIMIT1 = X - X*1.E-12
 SLIMIT2 = X + X*1.E-12
 1
 SQRT = 0.5*(SQRT + X/SQRT)
 IF (SQRT**2.LT.SLIMIT1) GO TO 1
 IF (SQRT**2.GT.SLIMIT2) GO TO 1
 RETURN
 2
 SQRT = 0.
 RETURN
END
Converting this to assembly language is quite straightforward. First, check if the argument is negative:

SA1 XI X1=X
NG XI,NEG SENSE ARGUMENT NEGATIVE

Second, set a first guess and compute limits:

EX6 XI X6=FIRST GUESS=X
ZR XI,SQR IF X=0,RETURN 0
SA3 TINY X3=10**(-12)
RX3 X1*X3 X3=X*10**(-12)
RX4 X1+X3 X4=UPPER LIMIT =X+X*10**(-12)
RX5 X4 X4
RX5 X1-X3 X5=LOWER LIMIT=X-X*10**(-12)
NX5 X5
SA3 HALF X3=0.5

SA3 HALF saves 0.5 so it will not have to be refetched each time in the loop.

LUP FX0 X1/X6 X0=X/LAST GUESS
RX0 X0+X6 X0=X/LAST GUESS +LAST GUESS
NX0 X0
RX6 X0*X3 X6=NEW GUESS=0.5*X0
RX0 X6*X6 X0=(NEW GUESS)**2
RX2 X0-X5 X2=(NEW GUESS)**2-LOWER LIMIT
NG X2,LUP IF VALUE TOO LOW,LOOP
RX2 X4-X0 X2=UPPER LIMIT-(NEW GUESS)**2
NG X2,LUP IF VALUE TOO HIGH, LOOP
EQ SQRT EXIT

In comparing the result with the limits, we are only interested in the sign of the difference, and hence need not spend the time normalizing after the subtractions (normalization would be necessary if we were going to use the results or test whether they were zero). Two more instructions are needed to process the case where the argument is negative:

NEG SX6 H0 IF ARGUMENT NEGATIVE,
EQ SQRT SET RESULT = 0 AND EXIT

Finally, we have to preset two words to 0.5 and 1.E-12. This is accomplished in COMPASS by the DATA pseudo-operation. This pseudo-op sets aside one word, and presets it to the constant in the address field. Thus, we would require:

TINY DATA 1.E-12
HALF DATA 0.5

86
Putting all this together, our routine would be:

```
IDENT SQR
ENTRY SQR

SQR
BSS 1
SA1 X1
NG X1,NEG SENSE ARGUMENT NEGATIVE
BX6 X1
ZR X1,SQR T IF X=0, RETURN
SA3 TINY X3=10**(−12)
RX3 X1*X3 X3=X*10**(−12)
RX4 X1+X3 X4=UPPER LIMIT=X+X*10**(−12)
NX4 X4
RX5 X1−X3 X5=LOWER LIMIT=X−X*10**(−12)
NX5 X5
SA3 HALF X3=0.5

LUP
RX0 X1/X6 X0=X/LAST GUESS
RX0 X0+X6 X0=X/LAST GUESS + LAST GUESS
NX0 X0
RX6 X0*X6 X6=NEW GUESS=0.5*X0
RX0 X6*X6 X0=(NEW GUESS)**2
RX2 X0−X5 X2=(NEW GUESS)**2−LOWER LIMIT
NG X2,LUP IF VALUE TOO LOW, LOOP
RX2 X4−X0 X2=UPPER LIMIT−(NEW GUESS)**2
NG X2,LUP IF VALUE TOO HIGH, LOOP
EQ SQR EXIT
NEG SX6 B0 IF ARGUMENT NEGATIVE, SET
EQ SQR EXIT
TINY DATA 1.E−12
HALF DATA 0.5

END
```

Let me conclude again with a comment on the importance of assembly language coding. Some functions, although in themselves very short, are used so often in so many programs that optimizing them becomes of prime importance. Chief among these are the FORTRAN library functions (SIN, COS, LOG, EXP, SQRT, etc.), where every attempt is made to squeeze the last microsecond out of the routine. Extensive studies have been made, for example, on the best starting value for Newton-Raphson square root iterations. In the case of the SQRT, a combination of an efficient algorithm and optimized machine language coding have resulted in a 6600 routine which computes a full-word precision (coefficient good to the last or next to the last bit) square root in 17−1/2 us. That is quite an accomplishment when one considers our effort above, which requires about that much time without any iterations!
3.13 Arithmetic Exit

Let me begin by assuring you that trying to divide by zero does not cause the 6600 to blow a transistor. The divide unit senses that the divisor is zero, and, instead of going through the entire division process, puts out a special number as the quotient. For a positive number divided by minus zero, the result is:

3777 0000 0000 0000 0000,

a positive number with the largest possible exponent (real exponent = 1777 (base 8) = 1023 (base 10)). A number with an exponent of 3777 (and any coefficient) is called "plus infinity", since we would ordinarily expect a non-zero number divided by zero to yield infinity. A negative number divided by a plus zero or a positive number divided by minus zero produces

4000 0000 0000 0000 0000

the negative number formed by complementing the high 12 bits in plus infinity; note that the actual exponent is still 3777 (base 8). In case you haven't guessed, this number has been dubbed "minus infinity".

Dividing (plus or minus) zero by (plus or minus) zero is a special case yielding

1777 0000 0000 0000 0000

Considering its significance, this number is appropriately called "plus indefinite". There is also a "minus indefinite":

6000 0000 0000 0000 0000.

Indefinite has an actual exponent of minus zero, which cannot otherwise arise in normal computation. In contrast, it is possible to produce infinity without dividing by zero: for example, by multiplying two numbers whose product would have an actual exponent greater than 1777. In such cases, known generally as "overflow", the 6600 automatically sets the result exponent to 3777 with the bias included.

The numbers infinity and indefinite are important because using either of them as an operand in a floating-point instruction causes the central processor to stop immediately (well, within a couple of microseconds, in any event). This feature, known as arithmetic error exit, is designed to avoid wasteful use of the
CPU, since infinite and indefinite results generally mean a program error. The operating system notices that your program has stopped, and puts out the dayfile message:

CPU ERROR EXIT AT 012345
ARITHMETIC INFINITE

for using infinity as an operand, and

CPU ERROR EXIT AT 012345
ARITHMETIC INDEFINITE

for using indefinite as an operand. The address is the approximate location of the instruction which caused the error exit. Remember that "arith errors" are caused only by using these special numbers in floating point instructions.

To keep the accidental use of an illegal operand from throwing your program off the machine, there are four conditional branch instructions to test for infinity and indefinite. These are the four remaining X register branches, opcodes 034 through 037. Two test for infinity, also called "out of range" (i.e., outside of the range of legal exponents). These instructions only check whether the 12 high bits are 3777 or 4000; the coefficient of the number in the X register is ignored.

<table>
<thead>
<tr>
<th>IR</th>
<th>Xj, K</th>
<th>Jump to K if Xj is in range (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 3 4 j K</td>
</tr>
<tr>
<td>29</td>
<td>20 17</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OR</th>
<th>Xj, K</th>
<th>Jump to K if Xj is out of range (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 3 5 j K</td>
</tr>
</tbody>
</table>

Similarly, the definite/indefinite test only compares the high 12 bits against 1777 and 6000.

<table>
<thead>
<tr>
<th>DF</th>
<th>Xj, K</th>
<th>Jump to K if Xj is definite (30 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 3 6 j K</td>
</tr>
</tbody>
</table>
As an example of the use of these instructions, let us modify our square root routine to check for all illegal arguments: infinity, indefinite and negative numbers. For any of these arguments, the routine will return an indefinite (just as the FORTRAN library routine does). Returning indefinite rather than zero for negative arguments prevents the program from wasting CPU time if it tries to use the result of the illegal SQRT call in further computation. Thus, our improved square routine:

```plaintext
IDENT   SQRRT
ENTRY   SQRRT
SQRRT   BSS 1
SA1     X1  X1 = X
NG      X1,ILL SENSE ARGUMENT NEGATIVE
OR      X1,ILL INFINITE,
ID      X1,ILL OR INDEFINITE
BX6     X1  X6 = FIRST GUESS = X
ZR      X1,SQRRT IF X = 0, RETURN 0
SA3     TINY X3 = 10**(-12)
RX3     X1*X3 X3 = X*10**(-12)
RX4     X1+X3 X4 = UPPER LIMIT = X+X*10**(-12)
NX4     X4
NX5     X5
SA3     HALF X3 = 0.5
LUP     RX0  X1/X6 X0 = X/LAST GUESS
RX0     X0+X6 X0 = X/LAST GUESS + LAST GUESS
NX0     X0
RX6     X0*X3 X6 = NEW GUESS = 0.5*X0
RX0     X6*X6 X0 = (NEW GUESS)**2
RX2     X0-X5 X2 = (NEW GUESS)**2-LOWER LIMIT
NG      X2,LUP IF VALUE TOO LOW, LOOP
RX2     X4-X0 X2 = UPPER LIMIT-(NEW GUESS)**2
NG      X2, LUP IF VALUE TOO HIGH, LOOP
EQ      SQRRT EXIT
ILL     SA1 IND IF ARGUMENT INVALID,
BX6     X1 RETURN INDEFINITE RESULT
EQ      SQRRT AND EXIT
TINY    DATA 1.E-12
HALF    DATA 0.5
IND     DATA 17770000000000000000000B
:IND
```
The size of our routine increases, we note that the number of constants we have to keep track of and put at the end of the routine grows too. We might compare our current situation to writing FORTRAN programs under the restriction that constants may appear only in DATA statements. If we wanted to add 3.1 to \(X \) in this restricted FORTRAN, we would have to write

\[
\begin{align*}
\text{DATA CON3P1 /3.1/} \\
X &= X + \text{CON3P1}
\end{align*}
\]

Of course, FORTRAN does allow us to write

\[
X = X + 3.1
\]

the compiler will automatically set aside a word at the end of the routine and initialize it to 3.1.

The COMPASS assembler also provides a facility for automatically generating constants, called the literal. For example, if we include in our routine

\[
\text{SA3} = 0.5
\]

COMPASS will automatically generate a

\[
\text{DATA} 0.5
\]

at the end of the routine, and put the address of the DATA instruction in the \(K \) portion of the SA3 instruction. The assembler checks for duplicate literals; even if \(=0.5 \) is used in several instructions, only one DATA 0.5 will be generated.

Using literals, we can shave a few lines off our SQRT routine without changing the generated code one whit: (see next page.)

Before performing our own exit from this discussion of arith errors, it is worth mentioning that the approach taken on the 6600 to check for division by zero, exceeding the range of exponents, etc., is not the method used on most computers. Computer designers have generally favored terminating the program when an arithmetic fault (such as division by zero or exceeding the range of exponents) occurs, rather than waiting until the result of such an operation is used later as an operand. The 6600 scheme has a definite disadvantage in comparison: when an arith error occurs in a large program, it may be difficult to find the instruction which generated the infinite or indefinite. This has been rectified on the 7600, which provides for optional program termination when an infinite or indefinite is generated.
Central Processor Instruction Set

<table>
<thead>
<tr>
<th>IDENT</th>
<th>SQR T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>SQR T</td>
</tr>
<tr>
<td>SQR T</td>
<td>BSS 1</td>
</tr>
<tr>
<td>SA1</td>
<td>X1</td>
</tr>
<tr>
<td>NG</td>
<td>X1,ILL</td>
</tr>
<tr>
<td>OR</td>
<td>X1,ILL</td>
</tr>
<tr>
<td>ID</td>
<td>X1,ILL</td>
</tr>
<tr>
<td>RX6</td>
<td>X1</td>
</tr>
<tr>
<td>ZR</td>
<td>X1,SQR T</td>
</tr>
<tr>
<td>SA3</td>
<td>=1.E-12</td>
</tr>
<tr>
<td>RX3</td>
<td>X1*X3</td>
</tr>
<tr>
<td>RX4</td>
<td>X1+X3</td>
</tr>
<tr>
<td>NX4</td>
<td>X4</td>
</tr>
<tr>
<td>RX5</td>
<td>X1-X3</td>
</tr>
<tr>
<td>NX5</td>
<td>X5</td>
</tr>
<tr>
<td>SA3</td>
<td>=0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX0</td>
</tr>
<tr>
<td>RX0</td>
</tr>
<tr>
<td>NX0</td>
</tr>
<tr>
<td>RX6</td>
</tr>
<tr>
<td>RX0</td>
</tr>
<tr>
<td>RX2</td>
</tr>
<tr>
<td>NG</td>
</tr>
<tr>
<td>RX2</td>
</tr>
<tr>
<td>NG</td>
</tr>
<tr>
<td>EQ</td>
</tr>
</tbody>
</table>

Indirect Stack Linkage (ILL)

<table>
<thead>
<tr>
<th>ILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA1</td>
</tr>
<tr>
<td>BX6</td>
</tr>
<tr>
<td>HQ</td>
</tr>
</tbody>
</table>

92
3.14 CHARACTER MANIPULATION

It is the task of every good computer manual to constantly reassure the student, in an effort to keep him from the realization that, by the time he has finished the twelfth volume and is an expert machine programmer, the machine is obsolete and he will have to start all over again with a new model. In accordance with this policy, I can reassure you that this section is not concerned with brain-washing.

A large portion of the data processed by the computer is text—strings of characters, rather than numeric data items. Source programs are text; in fact, anything coming in on Hollerith punched cards or going out onto the printer is at some point processed as text. Numeric data read in from cards must first be converted from a sequence of digits and decimal points to numbers in binary representation; in FORTRAN programs this is done automatically by the format-directed input processing routine (KRAKER).

Different computer applications require different sets of characters. The FORTRAN character set for the 6600 has 47 characters: 26 letters, 10 digits, and the "special characters" + - * / () $ = , . and the blank. A set of six bits is required to represent these 47 characters; thus a 6600 word can hold 10 characters

```
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
```

For some applications a set with more than 47 characters is desirable. With six bits for each character, we can have up to 64 characters. The SCOPE system accepts cards punched in a 64 character set (adding the characters: %=] : # <-> > < <= > < & V >> % ~ ; to those required for FORTRAN). These added characters are used, for example, for some of the special features of COMPASS. Some computer systems, such as the IBM System/360, allocate 8 bits for a character, thus permitting a very large character set, including upper and lower case letters.

The code used on the 6600 for associating a six-bit number with a character is called display code, because the computer display console, when it is being fed data by a PP, can display characters in accordance with this code. The letters are represented by the first 26 numbers, 01 (base 8) to 32 (base 8); the digits by the next 10, 33 (base 8) to 44 (base 8); the blank and special characters are matched up with 45 (base 8) to
77 (base 8) and 00 (the code is tabulated on the page following). The end of a card or a line is indicated by zeroes in bits 0 through 11 of a word. For example, the card

```
7
PROGRAM HOHUM(INPUT, OUTPUT)
```

would be stored in memory as:

```
55 55 55 55 55 55 20 22 17 07
11 01 15 55 10 17 10 25 15 55
51 11 16 20 25 24 56 17 25 24
20 25 24 52 55 55 55 55 00 00
```

in four CM words.

Techniques for character manipulation are generally applicable to the wider class of problems involving the separate handling of portions of a computer word. The fundamental capability required in all these problems which we have not yet considered is that of shifting around the bits in a word. Two different kinds of shifts are available on the 6600: a left circular shift and an arithmetic right shift.

A left circular shift one bit takes the contents of each bit position and moves it to the next position on the left; the bit at the left end goes into the rightmost bit position. For example,

```
100110100000
```

shifted left circular one bit becomes

```
001101000001
```

A left shift n bits is simply the repetition of this process n times; for example, our original 12 bit number, shifted left circular four becomes

```
101000001001
```

shifted left twelve,

```
100110100000
```

we get back the same number (each bit has gone once all the way around). The 6600 instruction to shift an X register left circular is (the text continues following the table below)
TABLE OF DISPLAY CODES

<table>
<thead>
<tr>
<th>CHARACTER</th>
<th>CODE</th>
<th>CHARACTER</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>00 **</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>A</td>
<td>01</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>B</td>
<td>02</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>C</td>
<td>03</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>D</td>
<td>04</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>E</td>
<td>05</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>06</td>
<td>6</td>
<td>41</td>
</tr>
<tr>
<td>G</td>
<td>07</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>H</td>
<td>10</td>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>I</td>
<td>11</td>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td>J</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>14</td>
<td>+</td>
<td>45</td>
</tr>
<tr>
<td>M</td>
<td>15</td>
<td>-</td>
<td>46</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>*</td>
<td>47</td>
</tr>
<tr>
<td>O</td>
<td>17</td>
<td>/</td>
<td>50</td>
</tr>
<tr>
<td>P</td>
<td>20</td>
<td>(</td>
<td>51</td>
</tr>
<tr>
<td>Q</td>
<td>21</td>
<td>)</td>
<td>52</td>
</tr>
<tr>
<td>R</td>
<td>22</td>
<td>$</td>
<td>53</td>
</tr>
<tr>
<td>S</td>
<td>23</td>
<td>=</td>
<td>54</td>
</tr>
<tr>
<td>T</td>
<td>24</td>
<td>(blank)</td>
<td>55</td>
</tr>
<tr>
<td>U</td>
<td>25</td>
<td>,</td>
<td>56</td>
</tr>
<tr>
<td>V</td>
<td>26</td>
<td>.</td>
<td>57</td>
</tr>
<tr>
<td>W</td>
<td>27</td>
<td>≡</td>
<td>60</td>
</tr>
<tr>
<td>X</td>
<td>30</td>
<td>[</td>
<td>61</td>
</tr>
<tr>
<td>Y</td>
<td>31</td>
<td>]</td>
<td>62</td>
</tr>
<tr>
<td>Z</td>
<td>32</td>
<td>%</td>
<td>63</td>
</tr>
</tbody>
</table>

*Do not use the semicolon in COMPASS instructions

**Some installations may use a 63-character set, in which display code 63 is ";", and "00" is only used to indicate end-of-file."
CENTRAL PROCESSOR INSTRUCTION SET

LXi jk Left shift Xi, jk places

\[
\begin{array}{cccc}
2 & 0 & _ & _ \\
14 & 8 & 5 & 0
\end{array}
\]

(15 bits)

The address field is a single number, the shift count, from 0 to 63 (shifting 61 places has the same effect as shifting left one place).

An arithmetic right shift one bit moves the contents of each bit position one place to the right. The rightmost bit, however, just "falls off" and is discarded; instead, the high order bit keeps its old value. In effect, as the number is shifted to the right, the bits vacated on the left end are filled up with the sign bit; thus, this process is called sign extension. Starting with the same 12 bit number, a right shift two yields

\[111001101000\]

and a right shift twelve leaves the sign bit in every position:

\[111111111111\]

The 6600 instruction for arithmetic right shifting an X register is

AXi jk Arithmetic right shift Xi, jk places

\[
\begin{array}{cccc}
2 & 1 & _ & _ \\
14 & 8 & 5 & 0
\end{array}
\]

(15 bits)

Again, the shift count (bits 0 to 5) can be 0 to 63, a count of 60 or more leaving 60 copies of the original sign bit in Xi.

Observe that right shifting an integer one bit divides the integer by two. Similarly, a left circular shift one place multiplies the integer by two (unless the range of possible integers is exceeded); left shifting a negative number brings a one into the low order bit, just as the end around carry would if the number were added to itself. For example,

\[111001111010 = -605 \text{ (base 8)} = -389 \text{ (base 10)}\]

doubled:
CENTRAL PROCESSOR INSTRUCTION SET

110011110101 = -1412 (base 8) = -778 (base 10)

halved:

111100111101 = -302 (base 8) = -194 (base 10)

A devious absolute value function will illustrate use of the right shift. Basically, all that is necessary for an absolute value is to complement the number if it is negative. In straightforward code, to put the absolute value of X1 in X6

BX6 X1
PL X6,NEXT
BX6 -X6

NEXT (next instruction)

Now consider

BX2 X1
AX2 60
BX6 X1-X2

After the AX2 60, X2 contains in each bit the sign bit of the number; in other words, all zeros if X1 was positive, all ones if X1 was negative. So, if X1 was positive, the last instruction logically subtracts all zeros from the number, which leaves it unaltered, while, if it was negative, a logical difference of X1 with all ones is performed, which complements the number. Though both sequences require three instructions, the right shift takes much less time than the branch instruction, so the latter code is preferred.

An an example of the use of the left shift, consider the task of taking ten characters, stored in the low six bits of ten consecutive computer words (upper 54 bits zero), and packing them into one word. This may be accomplished by putting the first character into the low bits of a register, shifting it left six bits, entering the next character into the low six bits, shifting both left six, etc. until all ten characters have been packed. In machine code this is realized as

SB1 B0 CHARACTER COUNT=0
SB2 10 NUMBER OF CHARACTERS TO PACK
SX6 B0
LUP SA1 B1+CHAR LOAD NEXT CHARACTER
LX6 6 SHIFT PREVIOUSLY LOADED CHARLS
BX6 X6+X1 OR IN NEXT CHARACTER
SB1 B1+1 INCREMENT CHARACTER COUNT
LT B1,B2,LUP IF MORE TO PACK, LOOP
Then ten characters are expected to be in the array CHAR, and the packed result will be left in X6. If, say, the characters were A B C D E F G H I J, X6 will be, after successive iterations of the loop:

00000000000000000001,
00000000000000000102,
00000000000000001023, . . . and finally
01020304050607101112.

We can now reverse the process, and write a similar loop to unpack the characters. For the sake of variety, let us unpack them into the high order six bits of ten consecutive words. Each time through the loop, then, we want to "mask out" and store the leftmost character, and then shift the word left six bits, so the proper character is in position the next time around. Masking out the leftmost character involves taking the logical product of the packed word with an appropriate mask, in this case 77000000000000000000000 (base 8). The high six bits of the product will be those bits from the packed word, since adding a bit with a one leaves the bit unchanged, while the low 54 bits will be zero, as the logical product of anything with zero is zero. So our last problem is to get 77000000000000000000000 (base 8) into a register. We could, of course, load it from memory. The 6600 designers, however, have provided us with an instruction for just such occasions:

\[
\begin{array}{c|c|c|c|c}
\text{MXi} & jk & \text{Form mask in X1, } jk \text{ bits} \\
\hline
14 & 8 & 5 & 0 & (15 \text{ bits}) \\
\end{array}
\]

which sets the high order \(jk \) bits of X1 to one, and the rest to zero (if \(jk = 0 \), the register is set to zero). In our example, we'll use a MX 6 to generate our mask:

\[
\begin{array}{llll}
\text{SB1} & \text{B0} & \text{CHARACTER COUNT=0} \\
\text{SB2} & 10 & \text{NUMBER OF CHARACTERS TO UNPACK} \\
\text{MX5} & 6 & \text{FORM ONE-CHARACTER MASK} \\
\text{LUP} & \text{EX6} & \text{X1*X5} & \text{MASK OUT ONE CHARACTER} \\
\text{SA6} & \text{B1+CHAR} & \text{STORE IN MEMORY ARRAY} \\
\text{LX1} & 6 & \text{SHIFT NEXT 6 CHAR.TO HIGH BITS} \\
\text{SB1} & \text{B1+1} & \text{INCREMENT CHARACTER COUNT} \\
\text{IT} & \text{B1,B2,LUP} & \text{IF MORE TO UNPACK, LOOP} \\
\end{array}
\]
where the packed word is assumed to be in X1 at the start. If we had needed a low six bit mask, we could have simply used SX5 778 (a 30 bit instruction) or, more efficiently, set X5 to 7777777777777777770 (base 8) with an MX5 54 (a 15 bit instruction), and then used a BX6 -X5*X1 instead of BX6 X1*X5.

As a final complication, we shall modify our character packing routine to stop packing if it encounters a special character or a blank -- in other words, anything with a display code of 45 (base 8) or above (for simplicity, we will not stop packing at a colon, display code 00). At the same time, we shall insist that the characters be left justified; i.e., that the first character be in the leftmost six bits. Thus, whenever we are finished packing characters, we will have to figure out how many characters have been packed, and shift the word accordingly. The two shift instructions we have studied so far, however do not permit us in any simple way to use the contents of a register as the shift count. We shall rectify this presently by introducing the last two shifts, which take their shift counts from B registers:

\[
\begin{array}{c}
\text{LX1 Bj, Xk} \\
221j\ k \\
148520 \\
\text{Left shift Xk nominally Bj places to X1} \\
\end{array}
\] (15 bits)

\[
\begin{array}{c}
\text{AX1 Bj, Xk} \\
231j\ k \\
\text{Arithmetic right shift Xk nominally Bj places to X1} \\
\end{array}
\] (15 bits)

If Bj is positive, these instructions act just like the corresponding shifts described earlier, with the low six bits of Bj taken as the shift count. (In the realm of 6600 trivia we may note that if any of bits 6 through 10 of Bj are non-zero, the nominal right shift will, instead of performing the shift, set Xk to zero.) If Bj is negative, each instruction acts as the other would with the complement of Bj. That is, a nominal left shift with -5 in the B register causes an arithmetic right shift 5, while a nominal right shift with -5 produces a circular left shift 5 places. Hence the term "nominal": opcode 22 is not intrinsically any more a left shift than a right shift but, in order to distinguish the two shifts, we designate each by their effect with a positive B register.
CENTRAL PROCESSOR INSTRUCTION SET

To stop the packing process when a blank or special character is encountered requires two additional instructions:

SB1	BO	CHARACTER COUNT
SB2	10	NUMBER OF CHARS TO PACK
SX6	0	
LUP	SA1	B1+CHAR
SX2	X1-45B	LOAD NEXT CHARACTER
PL	X2,DONE	IF BLANK OR SPECIAL, DONE
LX6	6	
BX6	X6+X1	ELSE PACK CHAR INTO WORD
SB1	B1+1	INCREMENT CHAR COUNT
LT	B1,B2,LUP	IF MORE TO PACK, LOOP

DONE

At DONE will go an instruction to shift X6 into position; if we are keeping the appropriate count in B3, we can use an LX6 B3,X6. B3, then, will have to be a count of the number of unfilled bits, starting at 60 and decreasing by 6 each time through the loop:

SB1	BO	CHARACTER COUNT=0
SB2	10	NUMBER OF CHARS TO PACK
SB3	60	INITIALIZE SHIFT COUNT
LUP	SA1	B1+CHAR
SX2	X1-45B	LOAD NEXT CHARACTER
PL	X2,DONE	IF BLANK OR SPECIAL, DONE
LX6	6	
BX6	X6+X1	ELSE PACK CHARACTER INTO WORD
SB1	B1+1	INCREMENT CHARACTER COUNT
SB3	B3-6	DECREMENT SHIFT COUNT
LT	B1,B2,LUP	IF MORE TO PACK, LOOP

DONE LX6 B3,X6 LEFT JUSTIFY PACKED WORD

The left shift is unnecessary in the event that ten characters are packed and we "fall through" the loop, but putting the left shift at the end of the loop makes the code simpler (if ten characters were packed, B3=0, so an LX6 0 is effectively performed).

Lest we omit discussing any of the instructions, let me make mention here of the "count ones" instruction. This rarely used instruction counts the number of one bits in an X register and places the number, between 0 and 60, in another X register:
CENTRAL PROCESSOR INSTRUCTION SET

CXi Xk Count of number of "1's" in Xk to Xi

```
4 7
14 8 5 2 0
```

(15 bits)

This instruction is of use when binary data, such as yes-no responses from questionnaires, are stored one datum per bit rather than one datum per word (as they would be in a FORTRAN type LOGICAL array) so that sixty times as much information can be stored in a given block of memory. A count ones instruction may then be used to determine the total number of yes responses (1 bits) in a word.

3.15 INTEGER MULTIPLICATION AND DIVISION

As we mentioned earlier, the original 6000 and 7000 series machines had no single instructions for integer multiplication and division. These operations were performed by converting the operands to floating point, executing a floating multiply or divide, respectively, and then converting the result back to an integer. Control Data subsequently realized that by making a fairly simple change in the floating multiply instruction it would be possible to perform integer multiplies without the conversions. This modified instruction is included in all recent 6000 and Cyber series, and has been installed as a "field change" in most earlier machines.

To begin this section, however, we will consider the situation before the field change, when integer multiplication as well as division had to be done by conversion to and from floating point. Because of the frequency of these operations, two instructions have been included for conversion between integer and floating point.

Consider converting an integer to floating point: all that is necessary is to put a biased exponent of zero in the high twelve bits;
CENTRAL PROCESSOR INSTRUCTION SET

for example: 0000 0000 0123 0004 7621
in floating point is: 2000 0000 0123 0004 7621
while its complement: 7777 7777 7654 7773 0156
is in floating point: 5777 7777 7654 7773 0156

This operation can be performed in one instruction with the pack instruction:

\[
\text{PX}_i \ B_j, X_k \quad \text{Pack } X_i \text{ from } X_k \text{ and } B_j
\]

This instruction takes the coefficient from \(X_k\) and the true exponent of the number from \(B_j\) and "packs" them together into a floating point number in \(X_l\). In the usual case where a true exponent of zero is desired, one need merely specify \(B_0\): \(\text{PX}_i \ X_k\). The instruction may be diagrammed:

\[
\begin{align*}
B_j & \quad \overline{\text{true(signed)exponent}} \\
17 & \quad 10 & \quad 0
\end{align*}
\]

\[
\begin{align*}
\text{sign} & \quad X_k & \quad \overline{\text{coefficient}} \\
59 & \quad 47 & \quad 0
\end{align*}
\]

\[
\begin{align*}
\text{sign} & \quad \text{biased exponent} & \quad X_l & \quad \overline{\text{coefficient}} \\
58 & \quad 47 & \quad 0 & \quad 0
\end{align*}
\]

For example, if

\[
B_j = 000010 \quad \text{and} \quad X_k = 0000 \ 0000 \ 4215 \ 7123 \ 6661
\]
then \(X_i = 2010 \) 0000 4214 7023 6661

If \(B_j = 777766 \) and \(X_k = 0635 \) 0210 0011 0000 0003

then \(X_i = 1766 \) 0210 0011 0000 0003

Note, that in the last example that only the low 48 bits of \(X_k \) are used for the coefficient, so packing a number greater than \(2^{48} - 1 \) will give an incorrect floating point conversion.

If the resulting floating point number will be used in normal floating point calculations, it should be normalized before being used or stored. If, however, it is to be used in one of the special integer arithmetic sequences to be described below, it may be unnecessary or incorrect to normalize it.

Floating to integer conversion is slightly more involved. The first step is performed by an unpack instruction, which does precisely the reverse of the pack instruction:

\[
\begin{array}{cc}
\text{UXi} & \text{Bj, Xk} \\
\text{Unpack Xk to Xi and Bj} \\
\hline
2 & 6 \\
1 & j \\
8 & k \\
5 & 2 \\
2 & 0 \\
\end{array}
\]

(15 bits)

This instruction unbiases the exponent from the floating point number in \(X_k \) and puts it in \(B_j \), while sending the 48 bit coefficient to \(X_i \):

\[
\begin{array}{cccc}
\text{Xk} & \text{biased exponent} \\
\hline
\text{sign} & \text{biased exponent} & \text{coefficient} \\
59 & 47 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Bj} & \text{sign extended} & \text{(unbiased exponent)} \\
\hline
\text{exponent sign extended} & \text{(unbiased exponent)} \\
17 & 9 & 0 \\
\end{array}
\]
For example, \(1.5 = \)
\[
X_k = 1720 \ 6000 \ 0000 \ 0000 \ 0000
\]
is unpacked to
\[
B_j = 777720 \ \ X_l = 0000 \ 6000 \ 0000 \ 0000 \ 0000
\]
while an unnormalized \(24. = \)
\[
X_k = 2003 \ 0000 \ 0000 \ 0000 \ 0003
\]
is unpacked into
\[
B_j = 000003 \ \ X_l = 0000 \ 0000 \ 0000 \ 0000 \ 0003.
\]
The second step is to convert this integer with exponent to a simple integer; for example, in the latter case we would want to multiply \(X_l=3\) by \(2^{*3}\) to get \(24\) as an integer. Now what is the fastest way to multiply an integer by \(2^{*n}\)? Shift it left \(n\) places. Thus we would want a sequence such as
\[
\begin{align*}
\text{UXL} & \quad B7,XL \\
\text{IXL} & \quad B7,XL
\end{align*}
\]
to convert \(X_l\) from floating to integer. In the second example, \(X_l\) would be shifted left 3, leaving \(X_l=30\) (base 8) = 24. In the first case, the shift count \(B_7=57\) (base 8), so the nominal left shift performs a right shift 57 (base 8), yielding \(X_l=1\), the proper result of a floating to integer conversion of \(1.5\). If the floating point number is too large to be stored as an integer (magnitude\(>2^{*59} - 1\)) the left shift will rotate the coefficient around, causing totally erroneous results; since only the low six bits are used as a shift count, for example, an exponent of \(101\) (base 8) is treated as an exponent of 1. On the other hand, if the floating point number is less than 1, the result of the integer conversion will always be zero. In particular, if the magnitude of a negative exponent (shift count) is more than 77 (base 8), the result register will automatically be set to zero by the shift instruction (remember that bit of trivia concerning the nominal shift instruction?).
CENTRAL PROCESSOR INSTRUCTION SET

Now that we are thoroughly versed in integer-floating conversion, integer multiplication and division should be simple matters. Suppose we want to put into X6 the product of the integers in X1 and X2. We first convert the numbers to floating point:

\[\begin{array}{cc}
PX3 & X1 \\
PX4 & X2 \\
\end{array} \]

Second, we multiply X3 and X4 together; to see which multiply instruction we require, consider the product of two sample numbers:

if \(X1 = 12 \) (base 10) and \(X2 = 20 \) (base 10), then

\[\begin{array}{cc}
X3 & = 2000 \ 0000 \ 0000 \ 0000 \ 0014 \\
X4 & = 2000 \ 0000 \ 0000 \ 0000 \ 0024 \\
\end{array} \]

so the product is

\[\begin{array}{cc}
0000 \ 0000 \ 0000 \ 0014 \ 2**0 \\
0000 \ 0000 \ 0000 \ 0024 \ 2**0 \\
\end{array} \]

\[\begin{array}{cc}
0000 \ 0000 \ 0000 \ 0000 \ 0360 \ 2**0 \\
\end{array} \]

!<-floating product->!<---- DP product--->!

So clearly we want the DP product

\[\begin{array}{cc}
DX6 & X3\times X4 \\
\end{array} \]

Finally, we have to convert the result back to integer; note, however, that the DP product of two numbers with true exponents of zero also has a true exponent of zero, so all we need is

\[\begin{array}{cc}
UX6 & X6 \\
\end{array} \]

"discarding" the exponent into B0. Thus, the sequence for an integer multiply is: pack both operands, DP multiply, unpack result.

Note that we do not normalize the operands before multiplying, and that the sequence of instructions described above would in fact not work if either of the operands were normalized prior to the multiplication. Also, the DP multiply will only recover the low 48 bits of the product; a more complicated sequence would be needed to recover the entire 96 bits. To save execution time, the FORTRAN compilers generate code to compute only the low 48
CENTRAL PROCESSOR INSTRUCTION SET

bits of an integer product, rather than compile the extra instructions necessary to get a 60 bit product (one clearly cannot store more than 60 bits into an integer variable).

If we now wished the integer quotient of X1 divided by X2 in X6, we would begin as before, packing the operands:

\[\text{PX3} \quad \text{X1} \]
\[\text{PX4} \quad \text{X2} \]

Before doing the division, however, we have to normalize the divisor, since, as was mentioned earlier, the divide instruction may otherwise produce an incorrect quotient:

\[\text{NX4} \quad \text{X4} \]

As division only generates a 48 bit quotient, there is no problem deciding which divide instruction to use; since we want the quotient to be truncated (rather than possibly rounded) we use a floating divide:

\[\text{FX6} \quad \text{X3/X4} \]

Lastly, we convert the result back to integer; inasmuch as we can't predict the exponent of the result, we have to unpack and shift the result:

\[\text{UX6} \quad \text{B7,X6} \]
\[\text{UX6} \quad \text{B7,X6} \]

To summarize the situation before the field change:

<table>
<thead>
<tr>
<th>integer</th>
<th>X1*X2 to X6</th>
<th>integer</th>
<th>X1/X2 to X6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX3</td>
<td>X1</td>
<td>PX3</td>
<td>X1</td>
</tr>
<tr>
<td>PX4</td>
<td>X2</td>
<td>PX4</td>
<td>X2</td>
</tr>
<tr>
<td>DX6</td>
<td>X3*X4</td>
<td>NX4</td>
<td>X4</td>
</tr>
<tr>
<td>UX6</td>
<td>X6</td>
<td>FX6</td>
<td>X3/X4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UX6</td>
<td>B7,X6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LX6</td>
<td>B7,X5</td>
</tr>
</tbody>
</table>

The change incorporated into recently manufactured machines, and made in the field to most earlier machines, modifies the operation of the double precision multiply instruction, DX1 Xj*Xk. If an integer smaller than 2^{**48} is used as an operand to
a floating point instruction, it is treated as a floating point number with a biased exponent of 0 and hence a true exponent of -1777(base 8). Before the double precision multiply was changed, if both operands of the instruction were integers less than 2^{**48}, the machine would compute a true exponent of -3776(base 8) for the product. Since a floating point number that small cannot be represented in 6600 floating point format, the instruction would return a zero result. The new, modified instruction checks for the condition where the high order 12 bits of both operands are all zeros or all ones (corresponding to a biased exponent of zero in a positive or negative number). In this case, the instruction returns the low 48 bits of the product of the coefficients in the low 48 bits of the result register, with the sign of the result extended into the high 12 bits. In short, if both operands and result are less than 2^{**48}, the double precision multiply can be used as an integer multiply instruction, without packing and unpacking. Integer divides must still be performed by the six-instruction sequence given above.

To commemorate this change, a new instruction mnemonic has been added to COMPASS in version 3:

IXi Xj*Xk

This line is assembled into the 15 bit instruction 42i+j+k, precisely like Dxi Xj*Xk.

Before using opcode 42 for doing integer multiplies, of course, you should check that your machine does have the integer multiply feature installed. In the example of integer multiply given below, we shall use the 4-instruction sequence for the multiply which, while less efficient, will work on all machines.

To illustrate the use of these integer operations we shall code a routine which converts an integer to the series of display code characters which is the decimal representation of the number. This is essentially the same task that is performed by the FORMAT-directed output encoding routine (KODER) when it is converting a number for output according to I format. The routine will be called with two arguments: the number to be converted, and the array into which the digits should be stored. We will agree only to process numbers whose magnitude is less than 2^{**48}; any larger integer will be considered out of range, designated by the letter R in the character string generated by the routine. The algorithm we shall use is similar to those described earlier, in the "Base Conversion Algorithms": divide the absolute value of the number repeatedly by 10 until the quotient is zero; the remainders from the successive divisions
will be the decimal digits, the least significant digit coming out first. If the number was negative, a minus sign must be tacked on in front. We will assume that the character array, transmitted as a parameter to our routine, will be 20 words long; storing the digits one to a word, right justified, we can than be sure we will never run out of space (2**48 is a 15 digit decimal). However, we will not assume the array was blank to start, and so the routine's last job will be to fill out the unused portion of the array with blanks. The routine will have to

1. compute the absolute value of the number
2. check whether the number is in range
3. generate the decimal digits by repeated division by 10
4. add on a minus sign if the number was negative
5. fill out the character array with blanks

Let us attack these tasks in order. In the previous section we saw an efficient technique for obtaining the absolute value of a number:

\[
\begin{align*}
SA2 & \quad A1+1 \quad X2=ADDRESS \ TO \ STORE \ RESULT \\
SB2 & \quad X2 \quad B2=ADDRESS \ TO \ STORE \ RESULT \\
SA1 & \quad X1 \quad X1=NUMBER \ TO \ BE \ CONVERTED \\
BX2 & \quad X1 \quad \\
AX2 & \quad 60 \quad \\
BX2 & \quad X1-X2 \quad X2=ABSOLUTE \ VALUE \ (NUMBER)
\end{align*}
\]

The number will be out of range if any of the high twelve bits in the absolute value of the number are non-zero. This can be checked for by shifting the number right 48 bits (so only the top twelve are left) and then testing for zero:

\[
\begin{align*}
BX3 & \quad X2 \\
AX3 & \quad 48 \\
NZ & \quad X3,RANGE \quad SENSE \ OUT \ OF \ RANGE
\end{align*}
\]

Before diving into the loop, we should initialize a few registers. A pointer is needed to inform the routine where to store the next digit; since the first digit will be stored in the last array element, at B2+19, we preset a counter to 19:

\[
SB3 \quad 19
\]

108
CENTRAL PROCESSOR INSTRUCTION SET

We shall compute remainders as is done in FORTRAN with the expression remainder = NUMBER - (NUMBER/10)*10. Since the number 10 is used twice in the loop (once to divide, once to multiply), we certainly will want to put it in a register outside the loop. Also, we need two forms of the number 10: an unnormalized floating point form for the multiply, and a normalized form for the divide. We shall keep one in X4, and the other in X5:

SX4 X4 = UNNORMALIZED FL PT 10
PX4 X4
NX5 X4 = NORMALIZED FL PT 10

The loop begins by computing NUMBER/NUMBER/10*10:

NEXT PX3 X2
PX3 X3/X5
UX3 B7,X3
LX3 B7,X3 X3 = NUMBER/10
PX0 X3
DX0 X0*X4
UX0 X0 X0 = NUMBER/10*10
TX6 X2-X0 X6 = NUMBER - NUMBER/10*10

Observe that we have been careful to preserve X3, since it will be the new value of "NUMBER" the next time through the loop. The decimal digit, now in X6, is converted to display code by adding 33 (base 8), and is stored in the character string:

SX6 X6+33B CONVERT DIGIT TO DISPLAY CODE
SA6 B2+B3 STORE CHARACTER
SB3 B3-1 RESET CHARACTER POINTER

Each time a character is stored, the pointer is decremented by one, since the next digit goes into the previous array element. Finally, NUMBER/10 is put into X2 for the next loop iteration, and, if the quotient is not zero, the loop is repeated.

BX2 X3 X2 = NEW NUMBER = OLD NUMBER/10
NZ X2,NEXT IF .NE.0, CONTINUE LOOPING

Next, we store a minus sign (display code 46 (base 8)) in front of the number if it was negative:

PL X1,FILL
SX6 46B IF NUMBER NEGATIVE
STOR SA6 B2+B3 STORE MINUS SIGN
SB3 B3-1
FILL ...
The label next to the store instruction anticipates a need we will see in a moment.

The final loop continues storing blanks (display code 55(base 8)) until B3 goes negative, i.e., the beginning of the array has been passed:

FILL SX6 55B
DUN NG B3,CDC IF ARRAY FULL, EXIT
SA6 B2+B3 IF NOT, STORE A BLANK,
SB3 B3-J MOVE CHARACTER POINTER
EQ DUN AND LOOP

Finally, for the out-of-range case, we want to store an R (display code 22(base 8), and then fill the array with blanks:

RANGE SX6 22B IF OUT OF RANGE,
SA6 B2+B3 STORE AN R
SB3 B3-J
EQ FILL

If you are reasonably observant, you have noticed that we can save two instructions:

RANGE SX6 22B IF OUT OF RANGE,
EQ STORE

STORE AN R

However, unless you are unusually perspicacious (more so than I was the first time I ran the program) you have not noticed that the SB3 19 came after the NZ X3,RANGE, so that, if the number was out of range and B3 was, say, 10 000, the routine could innocently wipe out your entire program. To rectify this error the SB3 19 has to be moved up a few instructions.

To add a crowning touch to this example, let us now dub it subroutine CDC (for convert to display code, of course), and show how such a routine might be usefully applied.
CENTRAL PROCESSOR INSTRUCTION SET

<table>
<thead>
<tr>
<th>IDENT</th>
<th>ENTRY</th>
<th>CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>CDC</td>
<td></td>
</tr>
<tr>
<td>BSS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SA1</td>
<td>B1</td>
<td>X1=NUMBER</td>
</tr>
<tr>
<td>BX2</td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>AX2</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>BX2</td>
<td>X1-X2</td>
<td>X2=ABSOLUTE VALUE(NUMBER)</td>
</tr>
<tr>
<td>SB3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>BX3</td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>AX3</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>NZ</td>
<td>X3,RANGE</td>
<td>SENSE OUT OF RANGE</td>
</tr>
<tr>
<td>SX4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PX4</td>
<td>X4</td>
<td>X4=UNNORMALIZED FL PT 10</td>
</tr>
<tr>
<td>NX5</td>
<td>X4</td>
<td>X5=NORMALIZED FL PT 10</td>
</tr>
<tr>
<td>NEXT</td>
<td>PX3</td>
<td>X2</td>
</tr>
<tr>
<td>FX3</td>
<td>X3/X5</td>
<td></td>
</tr>
<tr>
<td>UX3</td>
<td>B7,X3</td>
<td></td>
</tr>
<tr>
<td>LX3</td>
<td>B7,X3</td>
<td>X3=NUMBER/10</td>
</tr>
<tr>
<td>PX0</td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>DX0</td>
<td>X0*X4</td>
<td></td>
</tr>
<tr>
<td>UX0</td>
<td>X0</td>
<td>X0=NUMBER/10*10</td>
</tr>
<tr>
<td>IX6</td>
<td>X2-X0</td>
<td>X6=NUMBER-NUMBER/10*10</td>
</tr>
<tr>
<td>SX6</td>
<td>X6+33B</td>
<td>CONVERT DIGIT TO DISPLAY CODE</td>
</tr>
<tr>
<td>SA6</td>
<td>B2+B3</td>
<td>STORE CHARACTER</td>
</tr>
<tr>
<td>SB3</td>
<td>B3-1</td>
<td>RESET CHARACTER POINTER</td>
</tr>
<tr>
<td>BX2</td>
<td>X3</td>
<td>X2=NEW NUMBER=OLD NUMBER/10</td>
</tr>
<tr>
<td>NZ</td>
<td>X2,NEXT</td>
<td>IF .NE.0 CONTINUE LOOPING</td>
</tr>
<tr>
<td>PL</td>
<td>X1,FILL</td>
<td></td>
</tr>
<tr>
<td>SX6</td>
<td>46B</td>
<td>IF NUMBER NEGATIVE</td>
</tr>
<tr>
<td>STOR SA6</td>
<td>B2+B3</td>
<td>STORE MINUS SIGN</td>
</tr>
<tr>
<td>SB3</td>
<td>B3-1</td>
<td></td>
</tr>
<tr>
<td>FILL</td>
<td>SX6</td>
<td>55B</td>
</tr>
<tr>
<td>DUN</td>
<td>NG</td>
<td></td>
</tr>
<tr>
<td>SA6</td>
<td>B2+B3</td>
<td>IF NOT, STORE A BLANK</td>
</tr>
<tr>
<td>SB3</td>
<td>B3-1</td>
<td>MOVE CHARACTER POINTER</td>
</tr>
<tr>
<td>EQ</td>
<td>DUN</td>
<td>AND LOOP</td>
</tr>
<tr>
<td>RANGE</td>
<td>SX6</td>
<td>22B</td>
</tr>
<tr>
<td>EQ</td>
<td>STOR</td>
<td></td>
</tr>
<tr>
<td>END</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROGRAM TRUTH(OUTPUT)
DIMENSION CHAR(20)
CALL CDC (14710B,CHAR)
PRINT 100,CHAR
100 FORMAT(18HIEVERYBODY LOVES A, 20R1)
CALL EXIT
END
3.16 COMPARE AND MOVE

Operations on packed character strings are relatively cumbersome on the 6600. Ten instructions are required to extract the 7th through 14th characters of a 20-character (2-word) string and store them in some other word. Comparing two 20-character strings to determine which comes first in alphabetical order is a formidable task, for reasons to be explained later; perhaps 50 or 60 instructions are required on a 6600. These operations are so complex because the 6600 has no instructions for operating on units of data smaller than a 60-bit word. In contrast, most other large modern computers provide instructions for manipulating individual characters within a word. As long as the 6600 was intended primarily for running FORTRAN programs, this was not a major drawback; character manipulation generally plays a minor role in scientific calculation. When Control Data set its sights on capturing part of the large business market, however, the relatively slow character manipulation was a disadvantage, since commercial applications involve primarily the processing of large files of data, mostly in packed character format.

As a result, when Control Data decided to reincarnate the 6000 series under the name Cyber 70, they included in some of the models four new instructions for character manipulation. These four instructions are performed by a box added onto the old 6000 series central processors and dubbed the Compare and Move Unit, or CMU. The CMU is standard equipment on the Cyber 70 model 72 and 73 and the Cyber 170 models 172, 173, 174, 720, and 730; it is optionally available on the Cyber 170 model 171.

The four new instructions are radically different from the original 71 on the 6000 series: Three of the four instructions are 60 bits long. All work directly on operands in memory—data does not first have to be loaded into X registers. And all can directly address any character (6-bit field) in memory. Four new opcodes were created by dividing opcode 46 into 8 opcodes 460, 461,..., 467; 460 stays a no-op, 464 through 467 are used by
the CMU and 461 through 463 are left for the new instructions in the Cyber80.

The CMU treats memory not as a sequence of 60-bit words, but rather as a sequence of 6-bit fields or characters. Each character is designated by the address of the word in which it occurs, and its character position in that word, numbered 0 to 9 from left to right:

```
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
```

word 100 --> <-- 6 bits
```
| 0 | 1 | 2 | ... |
```

word 101

Character 9 of word 100 is thus followed by character 0 of word 101. A character string (which can be the operand or result of a CMU instruction) is specified by its starting character and a character count. For example, if we wanted to specify the 8th and 9th characters of word 100 and the 0th character of word 101, we would include in the CMU instruction the address 100, the character position, and the character count 3. Note that a character string may cross a word boundary with impunity.

The CMU instructions either move the contents of one character string into another character string or compare two character strings. In either case the instruction must specify the starting character of the two operands (or operand and result) and the length of the strings compared or moved. Specifying a character requires 22 bits (18 bit address + 4 bit character position); 2*22 bits + 9 bit opcode = 53 bits. In a full-word instruction, this leaves 7 bits for a length field, so a string of up to 2**7 - 1 = 127 characters can be moved or compared.

The first of the quartet we shall present is the direct move, opcode 465. It is a 60-bit instruction, and like the other full word instructions to be presented later, cannot be split between words.

```
DM  L, k(s), c(s), k(d), c(d)  Move L characters, starting at (k(s),c(s)) to (k(d),c(d))
```

```
<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>5</th>
<th>L&lt;4&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>50</td>
<td>47</td>
<td>k(s)</td>
</tr>
<tr>
<td>L&lt;3&gt;</td>
<td>c(s)</td>
<td>c(d)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>25</td>
<td>21</td>
<td>17</td>
</tr>
</tbody>
</table>
```

113
This instruction moves the L characters starting with character position c(s) of word k(s) to the L characters starting with character position k(d) of word c(d) (s and d stand for source and destination respectively). The source and destination fields should not overlap. The 7-bit length is divided between a 3-bit field, L(6-4), which contains bits 6, 5 and 4 of the length, and a 4-bit field, L(3-0), which contains bits 3, 2, 1, and 0 of the length. This curious arrangement of the instruction was dictated by a desire to have the two address fields in bits 0-17 and 30-47, just as they would be if the word contained two 30-bit instructions.

This instruction can be used instead of a load-transmit-store sequence to compile a simple assignment statement. For example,

\[B = A \]

would move 10 characters:

\[DM \ 10, A, 0, B, 0 \]

One instruction would even be enough to copy a small array:

\[
\begin{align*}
&DO \ 1 \ i = 1, 10 \\
&\quad ! \ B(i) = A(i)
\end{align*}
\]

could be compiled as a 100-character move:

\[DM \ 100, A, 0, B, 0 \]

The problem with which we began this section is equally simply solved. If we want to extract the 7th through 14th characters from a 20-character (2-word) array STRING and place them in the variable NAME, left-justified, with the two rightmost characters filled with blanks, we need only code

\[
\begin{align*}
&DM \ 8, STRING, 6, NAME, 0 \\
&DM \ 2, BLANKS, 0, NAME, 8
\end{align*}
\]

where BLANKS is word filled with BLANKS:

\[
\begin{align*}
BLANKS &\quad DATA \ 5555555555555555
\end{align*}
\]

On occasion we may want to move a string of more than 127 characters. We could, of course, code several DM's in a row, but control Data has been thoughtful enough to provide a second move
CENTRAL PROCESSOR INSTRUCTION SET

instruction, which can handle up to 8191 characters at a time. This is the indirect move:

IM Bj+K Move according to descriptor at address Bj+K (30 bits)

```
 4 6 4 J K
29 20 17 0
```

The word at address Bj+K should contain the length and the source and destination addresses and character positions in a special format called a move descriptor. COMPASS provides the pseudo-instruction MD for setting up a word in the proper format:

MD L,k(s),c(s),k(d),c(d) Move descriptor for moving L characters starting at (k(s),c(s)) to (k(d),c(d))

```
//
<table>
<thead>
<tr>
<th>L_12-4</th>
<th>k(s)</th>
<th>L_3-0</th>
<th>c(s)</th>
<th>c(d)</th>
<th>k(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 56</td>
<td>47</td>
<td>29 25</td>
<td>21 17</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

All the fields in the move descriptor have the same meaning as those in the direct move instruction; all we have gained through this indirect addressing is a larger length field. The DO loop given above as an example of the direct move can also be translated as an indirect move:

```
IM DESCRIP
```

with the move descriptor

```
DESCRIPT MD 100,A,0,B,0
```

The IM instruction has the standard format of a 30-bit instruction with a Bj+K address field (it is the only CMU instruction in a familiar format) and so the usual rules for such address fields apply: in particular, if no B register is mentioned, B0 is implied. Note also that MD defines data, not an instruction; it belongs with the other DATA instructions of a routine.

The CMU is very efficient for moving large blocks of data. After a couple of microseconds to start the ball rolling, the CMU can move one word every 300ns on the Cyber 70 series, one word every 500 ns on the 170 series. This is about ten times faster than
the most efficient loop using the other instructions on a Model 73.

One final note about the direct and indirect move: both use register X0 for temporary storage during execution of the instruction, and set X0 to +0 when the instruction is finished. All other registers are left intact by these instructions.

The two remaining instructions of the CMU compare two character strings; they return an indication of whether one string is less than, equal to, or greater than a second string. The comparison is done character by character, from left to right, until a difference in the two strings is found or the end of the strings is reached. In the comparison the characters are treated as 6-bit positive integers. We will begin with the 467 instruction, compare uncollated (just what uncollated means will be clear in a moment when we describe the compare collated instruction). This instruction is similar in format to the direct move:

```
CU L,k(a),c(a),k(b),c(b) Compare L characters starting at
                      k(a),c(a) with L characters starting
                      at k(b),c(b)
```

Here k(a), c(a) and k(b), c(b) give the starting addresses and character positions of the two string; L specifies the length of the strings, up to 127 characters. The result of the comparison is returned in X0 as follows:

string a = string b X0=0

first n characters of strings are equal,
(n+1)st character of a > (n+1)st character of b X0=L-n>0

first n characters of strings are equal,
(n+1)st character of a < (n+1)st character of b X0=n-L<0

In effect, during the execution of the instruction, X0 contains the number of characters which remain to be compared. If the instruction terminates because X0 reaches 0 or string a > string b, X0 is left unchanged; if it terminates because string a < string b, X0 is complemented.

116
To appreciate the value of the compare instruction, let us consider how we might perform the same operation without the CMU instructions. To simplify matters, we won’t be concerned with pinpointing the first character that is different in the two strings; we shall be satisfied if we can determine which string is larger or whether they are equal. The task of comparing two character string fields is then equivalent to treating the two fields as unsigned binary integers and comparing their values. To make the problem even simpler, the two strings we will compare are each 10 characters long and contained entirely in one word at locations FRITZ and SCHLITZ.

How do we compare two quantities? By subtracting and testing the difference for zero, plus, or minus. If we subtracted SCHLITZ from FRITZ, however, the machine would treat the two as assigned 60-bit quantities, which is not what we want (even comparing two signed 60 bit quantities is not so simple -- see exercise 22). For the machine to treat a quantity as a positive number, it has to be 59 bits or less, with the sign bit set to zero. As a result, we are going to have to do our 60-bit comparison in two parts; for example, first the high-order 59 bits, then the low order bit. So we begin by masking out the high-order 59 bits, shifting them right one bit, and subtracting them:

SA1	FRITZ
SA2	SCHLITZ
XM5	59
BX3	XI*X5
BX4	X2*X5
LX3	59
LX4	59
IX0	X3-X4
NZ	X0,CDONE

	(M)
	(L)
	(H)
	(L)

If the high 59 bits are equal, we have to compare the low order bits. Simply subtracting the full 60-bit words will give the difference of the low order bits, since the other bits are equal; there is no need to mask out the low order bits:

\[
\text{IX0 X1-X2 CDONE ...}
\]

This sequence of instructions leaves XO equal to zero if FRITZ > SCHLITZ, and XO < 0 if FRITZ < SCHLITZ. The same could be accomplished by the single instruction
CENTRAL PROCESSOR INSTRUCTION SET

CU 10,FRITZ,0,SCHLITZ,0

If the character strings were longer than 10 characters or not contained entirely in one word, the non-CMU code would be even longer, but only one CU instruction would be required.

This example, however, does not fully indicate the power of the CU instruction. We have not yet made use of the ability of the CU instruction to pinpoint the first character at which the two strings differ. This feature makes it possible for a single CU instruction to replace certain searching loops in 6000-series code. For example, if we wanted to find the first non-zero element in a ten-word array TABLE, we could set up a second ten-word array, initialized to zero by

 ZERO BSSZ 10

and then execute

 CU 100,TABLE,0,ZERO,0

This will leave in X0 a number between 100 and 0 (since characters are treated as positive numbers, no character string can be smaller than ZERO, so X0 will always be positive). By computing (110-X0)/10, we obtain a number between 1 and 10 indicating the first non-zero entry, or 11 if all the elements of TABLE are zero. Because the CMU can compare a pair of words every 600 ns on the Cyber 70s, every 725 ns on the Cyber 170s (after a few microseconds start-up time), this code will in general be much faster than a search loop.

Of course, since the comparison is done character by character, the CU can scan individual characters as well as words. Suppose we have read an 80-character string into array CARD, and want to find the first non-blank character. If we set up another 8-word array BLANKS, initialized to all blanks (5555555555555555), all that is required is a compare.

 CU 80,BLANKS,0,CARD,0

After this instruction is executed, the magnitude of X0= 80 - n, where n is the number of leading blanks (the sign of X0 depends on whether the first non-blank has a display code below or above 55 (base 8)). Thus, 81-IABS (X0) will give the number of the first non-blank character, and 81 if CARD is all blank.

One thing the CU instruction is not very good for is deciding which of two strings comes first in alphabetical order. How's
that? Didn't we just see that the compare instruction compares strings from left to right according to the display code values of their characters? And doesn't the display code sequence correspond to alphabetical order? All quite right, but that overlooks one minor detail—blanks. In display code, a blank has a higher value than any letter, so

\[
\begin{array}{c}
S & A & M \\
\end{array}
\begin{array}{c}
= 23 & 01 & 15 & 55
\end{array}
\]

is longer than

\[
\begin{array}{c}
S & A & M & E \\
\end{array}
\begin{array}{c}
= 23 & 01 & 15 & 05
\end{array}
\]

which is contrary to the normal lexicographic convention -- SAM comes first in the dictionary. In order to have the comparison come out right, we would have to change all 55 characters (blanks) to 00 before we made the comparison.

In a practical application, the problem is further complicated by the appearance of non-alphabetic characters in the strings to be compared. If we are sorting addresses into alphabetical order, we will have to handle digits, hyphens, commas, and periods. Should digits rank higher or lower than letters in comparisons? And how about punctuation? We could insist that the ordering imposed by display code (first letters, then digits, then punctuation) be used, but some customers may not like that and not buy our computer. Businessmen often have definite ideas as to how things should be sorted (perhaps because their old machine did it that way), and, as long as they have a few megabucks to put up for a new machine, who are we to argue? So, as input to any sorting program we might write, we allow the customer to list the order in which he wants the characters ranked for comparison purposes. Such a list it called a character collating sequence.

Suppose one user wanted his characters ranked as follows (in octal):

\[
\begin{array}{c}
S & A & M & E \\
\end{array}
\begin{array}{c}
= 23 & 01 & 15 & 05
\end{array}
\]
CENTRAL PROCESSOR INSTRUCTION SET

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>blank</td>
<td>(display code 55)</td>
</tr>
<tr>
<td>02</td>
<td>.</td>
<td>(" " 57)</td>
</tr>
<tr>
<td>03</td>
<td>,</td>
<td>(" " 56)</td>
</tr>
<tr>
<td>04</td>
<td>-</td>
<td>(" " 46)</td>
</tr>
<tr>
<td>05</td>
<td>0</td>
<td>(" " 33)</td>
</tr>
<tr>
<td>06</td>
<td>.</td>
<td>(" " 34)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>(" " 44)</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>(" " 01)</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>(" " 02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Z</td>
<td>(" " 32)</td>
</tr>
</tbody>
</table>

Before we could compare two character strings we would have to go through both strings, character by character, changing a 55 to a 01, a 57 to a 02, a 56 to a 03, etc., so that the comparison would come out as desired. Even using a table to do the conversion (with the 55th entry containing 01, the 57th, 02, etc.) this would take a long time. After this was all done, the compare instruction would take only a few microseconds, but this seems slim consolation to the man who realizes that he could have bought a yacht with what he paid for the CMU.

To keep the customers happy, CDC has included a fourth instruction in the CMU, compare collated. This instruction takes as input, in addition to the two strings to be compared, a table specifying the collating sequence. If a character in string A has the value m, and the corresponding character in string B has the value n, the compare collated will compare the values of the mth and nth entries in the table (this has the same effect as actually performing the substitution as described above). The format and significance of the fields is exactly the same as for the compare uncollated instruction:

```
CC  L, k(a), c(a), k(b), c(b)  Compare collated L characters
                                starting at k(a), c(a), with
                                characters starting at k(b), c(b)
```

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
| 4 | 6 | 5 | Lₐₐₜₜ | k(a) | L₃₉₉₉০
The result is returned in X0, exactly as for the compare uncollated instruction. The collating table has 64 entries, one for each possible value of a single character; these entries are packed 8 per word, forming an 8-word table. A0 must be set to the address of the first word of the table before executing the instruction.

Each entry in the collating sequence table is 6 bits. The 8 entries in each word occupy the high order 48 bits; the low 12 bits of each word are ignored. The format of the table, with the entries labeled in octal, is thus:

<table>
<thead>
<tr>
<th>word</th>
<th>59</th>
<th>53</th>
<th>47</th>
<th>41</th>
<th>35</th>
<th>29</th>
<th>23</th>
<th>17</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0+1</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0+2</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0+3</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0+4</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0+5</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0+6</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0+7</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suppose we wanted to compare character strings using the collating sequence given earlier. Since we must assign a ranking to every possible character, we shall assign the remaining special characters values above Z, from 51 (base 8) to 77 (base 8), (except for the 00 character ":", which will will be assigned the lowest value, 00). The table required for the CC instructions would be:

```
CCTABLE     DATA 00172021222324250000B
DATA 26273031323334350000B
DATA 36374041424344450000B
DATA 46475005060710110000B
DATA 1213141516171504520000B
DATA 53545556570103020000B
DATA 60616263646566670000B
DATA 70717273747576770000B
```

121
All that is required to compare out friends SCHLITZ and FRITZ, according to this collating sequence, is then

SAO CCTABLE
CC 10,FRITZ,0,SCHLITZ,0

It is possible to assign the same rank to two or more characters. Though this normally is not required in sorting applications, this possibility greatly increases the power of the compare instructions for scanning. Bear in mind in the following discussion that, since it is the ranks of two characters which are compared, two characters assigned to the same rank are considered equal.

With the uncollated compare it was possible only to scan a string for the first character which did not have some value "x", by comparing it with a string of all x's. With a collated compare, we can divide the character set into two classes, which we will call "interesting" and "uninteresting" characters, and then search a string for the first interesting character. We can do this by assigning all interesting characters rank 1 and all uninteresting characters rank 0 in our collating table, and then comparing our string with one consisting entirely of uninteresting characters.

For example, we might want to find the first arithmetic operator (+ - * or /) in the 80-character string card. To do this we create a table with rank 1 assigned to these four characters (45, 46, 47, and 50) and rank 0 assigned to all the rest:

<table>
<thead>
<tr>
<th>SCANTAB</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>DATA</td>
<td>00000000000101010000B</td>
</tr>
<tr>
<td>DATA</td>
<td>01000000000000000000000B</td>
</tr>
<tr>
<td>DATA</td>
<td>0</td>
</tr>
<tr>
<td>DATA</td>
<td>0</td>
</tr>
</tbody>
</table>

We then compare CARD with a string of 80 blanks (any uninteresting character will do):
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA0</td>
<td>SCANTAB</td>
</tr>
<tr>
<td>CC</td>
<td>80,CARD,0,BLANKS,0</td>
</tr>
<tr>
<td>SX6</td>
<td>81</td>
</tr>
<tr>
<td>IX6</td>
<td>X6-X0</td>
</tr>
</tbody>
</table>

This sequence leaves in X6 the index of the first operator in CARD (81 if no operator was present).
CHAPTER 4

COMPASS

4.1 THE PSEUDO-INSTRUCTIONS

If we are to believe the reference manual, COMPASS stands for COMPrehensive ASSemblly system. The operation codes we have used so far — the central processor instructions and a few of the most basic pseudo-operations — reflect only a small fraction of the capabilities of COMPASS. The eighty or so pseudo-instructions included in COMPASS offer the programmer powerful means for the control of code generation.

We shall not attempt to consider all these pseudo-instructions in this chapter; to do so in any detail would probably require several hundred pages and provide more information than most users will ever require. We shall rather restrict ourselves to a few of the most important COMPASS features — MACROS, MICROs, and conditional assembly — and then discuss primarily the principles involved, and not the detailed rules and restrictions. Control Data's COMPASS Reference Manual is generally understandable, if not totally lucid, and can provide the detailed information once the principles have been understood.

4.2 THE MACRO

What has been presented so far in this book, and indeed what is included in many books on programming, might leave the impression that, once the algorithm for a program has been determined, programming is essentially a task of translating this algorithm into an appropriate computer language. This is simply inaccurate. In an intelligently planned programming project, most of the time is spent in program design, and in program debugging and checkout; the actual coding represents only a small
fraction of the total effort. Needless to say, some projects, eager to produce results, skimp on program design and rush headlong into the coding phase; they soon pay in increased coding and debugging time, to remove errors that might never have arisen through proper design.

Good program design is in large part a task of identifying functions that must be performed repeatedly during the program, and of building larger functions out of more basic ones. Two fundamental programming constructs have been developed to assist the programmer once he has identified these functions: the subroutine and the macro. The idea behind the subroutine is that the code to implement the functions appears only once in the program. Each time the function is invoked, control is transferred to the subroutine; when the subroutine has completed its task, it returns control to the calling sequence. In contrast, the macro is based on the idea that the code to implement the function appear each time the function is required. When the statement invoking the function is encountered by COMPASS during assembly, it is replaced by the machine code necessary to perform the function.

A small example should help make this clear.

Suppose we have written a large program, and decide afterwards that we would like to keep count of the number of lines printed by our program. We would have to execute, after each section of code which generates a line of output, a sequence of instructions such as

\[
\begin{align*}
\text{SA1} & \quad \text{LCOUNT} \\
\text{SX6} & \quad \text{X1+1} \\
\text{SA6} & \quad \text{AI}
\end{align*}
\]

There are 629 such sections of code in our program, and we aren't looking forward to adding 3*629 cards to our deck. We have two ways out: first, we could put these three lines of code in a subroutine

\[
\begin{align*}
\text{LNCTR} & \quad \text{BSS} & 1 & \text{INCREMENT LINE COUNT} \\
\text{SA1} & \quad \text{LCOUNT} \\
\text{SX6} & \quad \text{X1+1} \\
\text{SA6} & \quad \text{AI} \\
\text{EQ} & \quad \text{LNCTR}
\end{align*}
\]

and place after each of those 629 sections of code a call to our subroutine

\[
\begin{align*}
\text{RJ} & \quad \text{LNCTR}
\end{align*}
\]
(note that, as long as our little subroutine appears in the same subprogram, i.e., between the same pair of IDENT and END cards, as the rest of our program, the label LNCTR is a perfectly ordinary symbol, and requires no ENTRY or EXTERNAL declarations). Alternatively, we could define these three lines of code as the macro LNCTR, by including at the beginning of our program

```
LNCTR MACRO
SA1 LCOUNT
SX6 XI+1
SA6 A1
ENDM
```

Then, whenever we write, in the opcode field, the macro name

```
LNCTR
```

COMPASS will expand the macro, generating

```
SA1 LCOUNT
SX6 XI+1
SA6 A1
```

The macro approach is more space consuming (75 bits are required for the three instructions, while the RJ needs at most 60 bits, if it is the first instruction in a word) but it is much faster, since three jumps are necessary to get to and from the subroutine.

We shall close this section with a bit of terminology. Every macro definition, such as the one just above, consists of three parts:

1. Macro heading: the MACRO pseudo-instruction, with the macro name in the location field

2. Macro body: the instructions which constitute the macro code definition

3. Macro terminator: the ENDM pseudo-instruction, which marks the end of the macro definition

The macro definition must appear prior to any reference to the macro; it is generally a good idea to put all macro definitions at the beginning of a subprogram.
4.3 MACRO PARAMETERS

If each macro could perform only one specific function, the applications for macros would be severely limited. As a result, macros, like subroutines, include parameters which may be used to vary the function performed. There is a fundamental difference between subroutine and macro parameters, which must be kept in mind. Subroutine parameters are transmitted to the subroutine at execution time, and the subroutine must include code to test these parameters and take appropriate action. Macro parameters, on the other hand, determine the code that is generated by COMPASS when the macro is invoked. We can elucidate this distinction by pursuing the example from the previous section.

Suppose that three different types of lines are printed by our big program, and we want to keep a separate count for each type of line, in LCOUNT1, LCOUNT2 and LCOUNT3. We could modify our subroutine to accept as argument, passed in B1, the address of the count to be incremented:

\[
\begin{array}{ccc}
\text{LNCTR} & \text{BSS} & 1 \\
\text{SA1} & \text{B1} & \text{SX6} \\
\text{XI+1} & \text{SA6} & \text{A1} \\
\text{EQ} & \text{LNCTR} & \\
\end{array}
\]

and then call it each time with the appropriate counter as argument, for example

\[
\begin{array}{ccc}
\text{SB1} & \text{LCOUNT2} & \\
\text{RJ} & \text{LNCTR} & \\
\end{array}
\]

Alternatively, we could define our macro with one parameter, the counter to be incremented:

\[
\begin{array}{ccc}
\text{LNCTR} & \text{MACRO} & \text{COUNTER} \\
\text{SA1} & \text{COUNTER} & \text{SX6} \\
\text{XI+1} & \text{SA6} & \text{A1} \\
\text{ENDM} & & \\
\end{array}
\]

Then, by invoking the macro with the name of one of the counters as argument (in the address field), we can generate the code to increment that counter; for example,

\[
\begin{array}{ccc}
\text{LNCTR} & \text{LCOUNT2} & \\
\end{array}
\]

would be expanded into

\[
\begin{array}{ccc}
\end{array}
\]

128
SA1 LCOUNT2
SX6 X1+1
SA6 A1

Note that, now that the "increment counter" function has been parameterized, the advantage of the macro version in terms of execution time has increased, while the disadvantage in terms of space consumed has disappeared.

A macro may have up to 63 parameters. In the macro heading, these parameters are listed in the address field, separated by commas, thus:

 MCNAM MACRO P1,P2,P3,P4

These parameter names may appear in any field of any line of the macro body. To be recognized as parameters, however, (and, therefore, replaced by the actual arguments when invoked) they must be bounded by one of the characters + - * / () $ = . , or blank. Thus, P1 would be recognized as a parameter in

 SA1 P1-2

but not in

 SA1 PICTR-2

A macro with several arguments is invoked by placing the macro name in the opcode field and listing the actual arguments in the address field, separated by commas. Macro MCNAM, for example, could be invoked by

 MCNAM HE,HI,HO+2,B6+HUM

The actual arguments may be arbitrary character strings not including blanks or commas (a method for transmitting arguments with commas and blanks will be discussed later).

Our second example will confront, in rather simplified form, one of today's most important programming problems: transferring programs from one machine to another completely different machine. The usual solution to this problem has been the writing of programs in high-level, "machine independent" languages. Large computer systems now generally include FORTRAN, COBOL, and ALGOL compilers; the smaller systems at least a FORTRAN compiler. For the scientific and commercial applications for which these languages were designed, their use appears to offer the best solution to program transferability. There are, however, many applications, such as text processing, list processing, and

129
systems programming, for which these languages are less than ideal. The natural impulse under these circumstances is to
design one's own programming language, and write a compiler to
translate it; one soon realizes, though, that no else will be
able to use your program (unless he has the same computer you
do), since he doesn't have a compiler for your language. One way
out of this morass is to design a small set of macros which
perform all the basic functions you require, and write your
program as a sequence of macro calls. Transferring the program
to another machine would then involve recoding the macro bodies,
certainly a much smaller job than recoding the entire program.

For this scheme we require a macro processor on each machine, but
not necessarily a macro-assembler. In other words, for one
machine we might write our macro bodies in the language ALGOL,
and have our macro processor expand our program (sequence of
macro calls) into an ALGOL program. Some higher level languages
do include a macro processor; PL/I is probably the most familiar
example. However, since the only macro processor on most
machines is the macro-assembler, and, as you may recall, we are
supposed to be studying COMPASS in this chapter, we shall
restrict ourselves to writing COMPASS versions of our macros.

The set of macros we shall prepare will not be in any sense
complete; all we will be able to do with them is add and subtract
integers and floating-point numbers. In constructing our macros,
we shall imagine that we are writing code for a hypothetical
machine with one register, which we shall call the AC
(accumulator). This machine can load a word from memory into the
AC, store a word in memory from the AC, and compute the integer
or real sum or difference of a memory word and the AC, leaving
the result in the AC. This makes a total of six hypothetical
instructions, so we need six macros:

LOAD	MACRO	ADDR
SA5	ADDR	
BX6	X5	
ENDM		

STORE	MACRO	ADDR
SA6	ADDR	
ENDM		

IADD	MACRO	ADDR
SA5	ADDR	
IX6	X6+X5	
ENDM		
ISUB MACRO ADDR
SA5 ADDR
IX6 X6-X5
ENDM

FADD MACRO ADDR
SA5 ADDR
RX6 X6+X5
NX6 X6
ENDM

FSUB MACRO ADDR
SA5 ADDR
RX6 X6-X5
NX6 X6
ENDM

Then, if we wanted to store the sum of the real variables A and B in C, and the difference of the integer variables K and L in M, we would code

LOAD A
FADD B
STORE C
LOAD K
ISUB L
STORE M

This would be expanded by COMPASS into

SA5 A
BX6 X5
SA5 B
RX6 X6+X5
NX6 X6
SA6 C
SA5 K
BX6 X5
SA5 L
IX6 X6-X5
SA6 M

(If you wish to assemble these macros yourself, you must include

LIST M

immediately after the IDENT card, or the macro expansions will not be listed).
It should be a simple task to implement these macros on any computer. Of course, they are not likely to yield very efficient code (unless the real machine, like our hypothetical one, has only a single register). But we are often willing to sacrifice some efficiency in order to get an easily transferable program; once the program has been successfully transferred to a new machine, it is always possible to recode critical sections of the program in carefully optimized machine code.

Naturally, our little macro language has its problems too. One of them is indicated by the following code sequence, where A and B are floating point variables, K an integer variable:

```
LOAD    A
IADD    K
STORE   B
```

What's wrong? We are adding a floating point number (A) to an integer (K). If our macros are to be worth the cards they are punched on, we must either flag this as an error, or convert one of the operands to the mode (floating point or integer) of the other before performing the addition.

4.4 CONDITIONAL ASSEMBLY

In order to catch these "mixed-mode" operations (integer operand and floating point operand), we have to

1. keep track of the mode (integer or floating) of the quantity in the accumulator,

2. before every arithmetic operation, compare this mode with the mode of the operand in memory, and convert one of the two operands if necessary.

To do the first, we need a symbol to which we can assign the value 0 when the accumulator contains an integer quantity and 1 when it contains a floating point quantity.

Until now, the only way we had of assigning a value to a symbol was to place the symbol in the location field:

```
CMBAL    SB1    3
```

132
The value thus assigned is the address of the word containing the instruction. This value is permanently assigned to the symbol; anywhere in the program that this symbol is used, it will have this value. What we require now is a means of defining a symbol in such a way that it can take on different values at different points in the program. This ability is provided by the SET pseudo-instruction:

```
CMBAL SET 1
```

The SET pseudo-operation assigns the value of the number, symbol, or expression* in the address field to the symbol in the location field. This assignment remains in effect until the next SET involving this symbol is encountered. So, for example, the sequence

```
Q SET A
SB1 Q
Q SET Q+1
SB2 Q
```

yields the same instructions as the sequence

```
SB1 A
SB2 A+1
```

These two methods of defining a symbol are incompatible; a symbol may be assigned a value either one way or the other, but not both. Thus, if you would like an assembly error, code

```
OOPS PX5 X1*X3
OOPS SET 37
```

Armed with our SET instructions, we are now able to keep track of the mode of the quantity in the accumulator. If we use the symbol ACMDE to hold this information, any macro which leaves an integer quantity in the accumulator will have to include

```
ACMDE SET 0
```

*Note: An expression in COMPASS, more precisely called an address expression, is a series of integers and symbols separated by the four operators + - * / ; for example, A+3, HUM-HO, C*2/D. Expressions are evaluated from left to right, with multiplication and division performed before addition and subtraction, as in FORTRAN. Wherever a number or symbol is expected in an address field, an address expression may appear instead.
while any macro which leaves a floating point number will have to include

```
ACMDE     SET     1
```

This brings us to our second problem: how can we use this information (the value of ACMDE) to control the code generated by the macros?

COMPASS provides for this purpose a set of IF pseudo-operations, which permit the conditional assembly of instructions. That is, an IF instruction specifies a relation between two quantities; if this relation holds, the following instructions are assembled by COMPASS as usual; if it does not hold, the following instructions (up to the next ENDIF instruction) are skipped and ignored. For example,

```
IFEQ      A,B
JP        THENCE
ENDIF
```

will generate a jump to THENCE if the values of the symbols A and B are equal; if they are not equal, no code will be generated. It should be emphasized that the IF pseudo-operation causes a test to be made at the time the program is assembled; its effect is entirely different from that of the FORTRAN IF statement

```
IF (A.EQ.B) GO TO 10
```

which is compiled into code that compares the contents of locations A and B at execution time.

There are a total of ten conditional-assembly pseudo-operations in COMPASS. Six of them, with mnemonics IFEQ, IFNE, IFGT, IFGE, IFLE, and IFLT, compare the values of the two items in the address field; as should be evident, the mnemonics are formed from IF + name of corresponding FORTRAN relational operator. The items of the address field, separated by commas, can be numbers, symbols, or address expressions. The number of instructions to be assembled or skipped is indicated by an ENDIF instruction or by a line count as the third item in the address field:

```
IFEQ      A,B,1
JP        THENCE
```

We shall use the ENDIF in all our examples. (Note: lines skipped by an IF instruction are normally not listed on the assembler output.)
We now have all the information we need to write our improved macros. Let's start with the LOAD macro. We immediately encounter a problem: we can't tell from

\begin{verbatim}
LOAD VARB
\end{verbatim}
whether VARB is an integer or floating point variable. What we will have to do is replace our old LOAD macro with two new macros, ILOAD, and FLOAD, for loading integer and floating quantities, respectively. The ILOAD macro will set ACMDE to 0, the FLOAD macro will set it to 1:

\begin{verbatim}
ILOAD MACRO ADDR
 SA5 ADDR
 BX6 X5
ACMDE SET 0
 ENDM

FLOAD MACRO ADDR
 SA5 ADDR
 BX6 X5
ACMDE SET 1
 ENDM
\end{verbatim}

The addition and subtraction macros are more complicated, since they will have to include some conditionally assembled code. Let us begin by considering the integer add macro, IADD; a problem arose with this macro when the quantity already in the accumulator was floating-point. Taking our cue from the mixed-mode rules in FORTRAN, we shall, in this case, convert the integer to floating-point and perform a floating point addition. Thus, our new IADD macro will be

\begin{verbatim}
IADD MACRO ADDR
 SA5 ADDR
 IF EQ ACMDE,0
 IX6 X6+X5
 ENDiF
 IF EQ ACMDE,1
 PX5 X5
 NX5 X5
 RX6 X6+X5
 NX6 X6
 ENDiF
 ENDM
\end{verbatim}

If ACMDE=0 (the accumulator contains an integer)
COMPASS

SA5 ADDR
IX6 X6+X5

is generated as before; if ACMDE=1 (the accumulator contains a floating point number) the operand from memory is first converted to floating point, and then the floating addition is performed:

SA5 ADDR
PX5 X5
NX5 X5
RX6 X6+X5
NX6 X6

Note that, since the mode of the quantity in the accumulator is not changed by either operation, ACMDE need not be reset.

For the floating point add macro, FADD, the situation is reversed: if the accumulator contains an integer, we must convert it to floating point before performing the addition. Thus, this macro becomes

FADD MACRO ADDR
SA5 ADDR
IPEQ ACMDE,0
PX6 X6
NX6 X6
ACMDE SET 1
ENDIF
RX6 X6+X5
NX6 X6
ENDM

If ACMDE=1 we get back the original FADD macro:

SA5 ADDR
RX6 X6+X5
NX6 X6

however, if ACMDE=0, the accumulator is first converted from integer to floating point:

SA5 ADDR
PX6 X6
NX6 X6
ACMDE SET 1
RX6 X6+X5
NX6 X6
Since this changes the mode of the accumulator, ACMDE must be reset.

Replace addition by subtraction, and we have ISUB and FSUB:

```
ISUB MACRO ADDR
SA5 ADDR
IFEQ ACMDE, 0
IX6 X6-X5
ENDIF
IFEQ ACMDE, 1
PX5 X5
NX5 X5
RX6 X6-X5
NX6 X6
ENDIF
ENDM
```

```
FSUB MACRO ADDR
SA5 ADDR
IFEQ ACMDE, 0
PX6 X6
NX6 X6
ACMDE SET 1
ENDIF
RX6 X6-X5
NX6 X6
ENDIF
ENDM
```

This brings us finally to the STORE macro. As we did for the LOAD macro, we shall introduce two macros, ISTORE and FSTORE, for storing into integer and floating point variables respectively. The ISTORE macro will have to first convert the accumulator to an integer if it contains a floating point number:

```
ISTORE MACRO ADDR
IFEQ ACMDE, 1
UX6 B1,X6
LX6 B1,X6
ACMDE SET 0
ENDIF
SA6 ADDR
ENDIF
ENDM
```

Similarly, the FSTORE macro will have to convert the accumulator to floating point if it contains an integer:
Before we set aside our mixed-mode problems for a while, let us add two small refinements. In these eight macros, the pack and normalize sequence required to convert an integer to floating point occurs five times, so it seems reasonable to make this sequence into a macro itself. Something like

FLOAT MACRO X1
PX1 X1
NX1 X1
ENDM

seems appropriate. Then, if we wanted to generate the code to "float" X6, we would write

FLOAT X6

Just to be sure that this works (although this is such a trivial macro it is hard to imagine we could have made a mistake) we look at the macro expansion:

PX1 X6
NX1 X6

Surprised? If you are, you forgot the rule concerning the recognition of parameters in the macro body. Parameters are recognized only if they are delimited by one of the characters + - * / () $ = , ← → # or blank. The X1's in the address fields meet this requirement, since they are surrounded by blanks; however, the X1's in the opcode field are immediately preceded by a letter, so they fail this test. This predicament was anticipated by the assembler designers, and a special character "," was introduced to circumvent the problem. The magic of this character is that, as soon as actual parameters have been substituted into the macro body, all the 's disappear. This character is referred to as the catenation (or concatenation) mark, and the procedure of removing these blanks is called catenation. To see how this works, let us fix up the definition of FLOAT:
FLOAT MACRO X1
P→X1 X1
N→X1 X1
ENDM

When the macro is invoked by

FLOAT X6

COMPASS first substitutes X6 wherever X1 occurred as a parameter in the macro body:

P→X6 X6
N→X6 X6

then it deletes the catenation marks and squeezes together the characters surrounding the catenation marks (so no blank is left where a catenation mark was deleted):

PX6 X6
NX6 X6

(Note: if only LIST M is requested, COMPASS will print these lines with the catenation marks still in; to see the lines with these marks removed, a "list" card must be included; i.e.):

LIST A

Now that our FLOAT macro is in working order, we can use it in our earlier macros. For example, IADD would become

IADD MACRO ADDR
SA5 ADDR
IFEQ ACMDE,0
IX6 X6+X5
ENDIF
IFEQ ACMDE,1
FLOAT X5
RX6 X6+X5
NX6 X6
ENDIF
ENDM

This macro is a simple illustration of the property that makes macros such a powerful tool: the ability to nest macros, to invoke one macro within the body of another. The inner macro (FLOAT) need not be defined before it appears in the definition of the outer macro (IADD), but only before the outer macro is invoked.

139
We can pare one more line from the IADD and ISUB macros by using the ELSE pseudo-operation. An ELSE appearing in the range of an IF (between the IF and the ENDIF) reverses the effect of the IF instruction. That is, if the condition in the IF instruction is true, the lines between the IF and the ELSE are assembled while the lines between the ELSE and the ENDIF are skipped; if the condition is false, the lines before the ELSE are skipped and the lines after it are assembled. For example,

```
IFEQ DESPERAT,0
EQ EXIT
ELSE
EQ HELP
ENDIF
```

generates a jump to EXIT if DESPERAT is zero, and a jump to HELP if it isn't. In the case of our IADD macro, since ACMDE will always be 0 or 1, we can code

```
IADD MACRO ADDR
SA5 ADDR
IFEQ ACMDE,0
IX6 X6+X5
ELSE
FLOAT X5
RX6 X6+X5
NX6 X6
ENDIF
ENDM
```

We leave to the reader the straightforward task of modifying all the earlier macros to use FLOAT, and then trying these macros out on a few sequences of mixed-mode arithmetic. Having now whetted the reader's appetite for the excitement of mixed-mode arithmetic, rest assured that we shall not abandon the topic; after a brief respite, we shall return with yet finer and fancier macros.

4.5 Debugging with Macros

Although any programmer who gets anything accomplished spends at least 90% of his time debugging, most programming texts give
short script to the topic. This book will not be different. This is hardly surprising; a thorough exposition of coding requires a knowledge of the rules of the programming language, which are usually readily available. A proper exposition of debugging, on the other hand, would require some knowledge of the kind of mistakes people make in writing programs, and this complex and mysterious area has been the subject of relatively little study (perhaps because people are reluctant to admit the mistakes they make).

Of course, the best solution would be to not make mistakes in the first place; some of the philosophical interludes in this volume have tried to suggest how using a higher-level language where appropriate and organizing the program carefully may help to reduce the frequency of bugs. Still, the best of us will make mistakes, so we may reasonably ask what tools are available to help us track down these errors.

The standard tool used in debugging programs on the CDC 6000 series (and many other machines) may best be characterized by one word: medieval. It is the absolute octal core dump: a print-out of the contents of core, in octal, near the point where the program stopped, or got an arith error, or whatever (in chapter 5 we shall briefly describe how to read a dump). There is a certain irony in providing the user with an array of powerful machine-independent languages and then, when the program "bombs out," telling him that he has to learn machine language in order to interpret the dump that is produced. In fairness to Control Data, some additional debugging tools are provided with the system, although also oriented towards assembly-language programmers. However, because these tools are more complicated than many programmers would like, and because they did not work when first introduced, they have not become very popular. (The author, having developed a much more powerful debugging system, which had these problems to a correspondingly greater degree, is painfully aware of the lack of enthusiasm which ensues.) As an alternative to these tools, we shall examine how macros can be used to build simple yet powerful debugging aids.

We shall begin with a debugging aid called a store trace. This is a print-out, each time a store occurs, of the name of the variable stored into and the value stored. To make life simple, we shall assume that we have only integer variables (no mixed-mode). Also, so that we need not concern ourselves with calling output routines in assembly language, we shall use a small FORTRAN routine to print the trace:
SUBROUTINE TRACE(NAME, IVALUE)
PRINT 1, NAME, IVALUE
1 FORMAT(* STORE TO *, A8, * =*, I17)
RETURN
END

All that is now required is to place a call to TRACE after every store instruction in the program. If the program were coded instruction by instruction, this might be a sizeable task; for a program using our macro package, however, this involves merely putting a call to TRACE in the STORE macro.

The STORE macro will begin, as before, with the actual store operation:

STORE MACRO ADDR
SA6 ADDR

Next, we must set up the arguments for the call to TRACE. Somewhere in our COMPASS program we set aside space for the argument list:

TRCARGS BSS 2
DATA 0

The macro must store the addresses of the two arguments in TRCARGS and TRCARGS+1. The second argument is easy, since the value stored is now in location ADDR:

SX7 A6
SA7 TRCARGS+1

The first argument, the name of the variable, is a bit more complicated. If we were invoking TRACE from a FORTRAN program, the call would have the general form

CALL TRACE(4HIVAR, IVAR)

Character string constants valid in FORTRAN, such as 1H+ or 3REOF, are also allowed in COMPASS DATA instructions, so for our macro the DATA instruction would be

DATA 8H→ADDR

If we included this DATA instruction in the macro, it would be necessary to jump around it; this seems neither elegant nor efficient. Fortunately, we can circumvent this problem without circumventing the DATA instruction by using a COMPASS feature
introduced in the last chapter (3.13): the literal. If we code

```
SX7 = 8H ADDR
SA7 TRCARGS
```

COMPASS will generate the DATA instruction at the end of the program, and put its address in the K portion of the SX7 instruction. This takes care of the arguments, so we can call our FORTRAN routine

```
SA1 TRCARGS
RJ TRACE
```

On return from TRACE, X6 will no longer contain the value of the accumulator (routines generally do not save and restore registers), so we must reload X6:

```
SA5 ADDR
BX6 X5
ENDM
```

If we glue all the parts together we have

```
STORE MACRO ADDR
SA6 ADDR
SX7 = 8H ADDR
SA7 TRCARGS
SX7 A6
SA7 TRCARGS+1
SA1 TRCARGS
RJ TRACE
SA5 ADDR
BX6 X5
ENDM
```

Starting with this basic pattern, the variations which can be made are endless. Using conditional assembly, we can trace stores to one or a few variables; through appropriate tests in the TRACE routine, we can start printing the trace when a particular variable is assigned a particular value. We shall exercise some restraint, however, and consider only two small improvements.

Debugging aids like the store trace are best designed into the program from the start, and left in throughout program development. This is possible if we make assembly of the code for tracing stores conditional on the value of a symbol:
In this way the debugging code will be assembled only if STORTRAC is non-zero. We may also make the external declaration which is required for TRACE conditional:

```
IFNE STORTRAC,0
EXT TRACE
ENDIF
```

As well as the space for the argument list

```
IFNE STORTRAC,0
TRCARGS BSS 2
DATA 0
ENDIF
```

Finally, we must set STORTRAC at the beginning of the program, with appropriate flourish:

```
*
* STORTRAC : NON-ZERO TO TRACE STORES
*
STORTRAC SET 1
```

Our second improvement is concerned with the traceback features of FORTRAN and other high-level languages. When a system routine detects an error, it traces backwards the series of subroutine calls which brought control to this routine, starting with the subroutine which invoked the current routine, then the subroutine that invoked that routine, and so forth until the main program is reached. A traceback is made possible by the convention that a RJ always be placed in the high-order 30 bits of an instruction word, and the low-order 30 bits contain

```
nnnn TRACEBAK
```
where nnnn (12 bits) is the line number of the statement which caused the RJ to be generated (0 for RJ in COMPASS programs) and TRACEBAK is the (18 bit) address of a word in the calling routine. This word contains the name of the calling routine, and in the low-order 18 bits the address of the entry line of the calling routine.

In order to set up this word and the pointer to it, we must introduce a new pseudo-operation, VFD (variable field definition). In contrast to the DATA operation, the VFD permits us to specify separately the contents of portions (fields) of a word. The address field of the VFD consists of one or more subfields, separated by commas; each subfield has the form

bit-count/ address-expression

and specifies that the value of the address expression is to be placed into the next "bit count" bits of the word. For example,

VFD 12/1777B,48/0

generates a plus indefinite, and

VFD 60/TRACEBAK

generates a word containing the address TRACEBAK. If the expression includes a symbol (is not composed entirely of constants*) it must be placed in a field at least 18 bits long, ending at bit 0, 15, or 30 (in a position where the k portion of a 30 bit instruction could occur); thus

VFD 59/TRACEBAK,1/0

is illegal. Note that although the previous VFD specifies a full word field, a DATA instruction could not be used; the address field of a DATA instruction can contain only constants.

The STORE macro would be modified as follows:

*Note: More precisely, as shall be explained in Section 4.7, if it is not an absolute expression.
The + in the location field (column 1 or 2) of the RJ instruction forces upper, i.e., places the RJ in the high-order part of a new instruction word. Contrarily, the - in the location field of the VFD overrides the force upper which is automatic after the RJ, and places the VFD in the next available 30 bits.

If the routine written in our macro package is called LINDA, it must begin essentially thus:

```
IDENT LINDA
TRACEBAK VFD 42/7LINDA ,18/LINDA
ENTRY LINDA
LINDA 8SS 1
```

If we adhere to these conventions, it is a simple matter to generate a traceback. To indicate how this is done, we shall consider the example shown in Figure 2. The main program, MAIN, calls a user-written subroutine, MYSUB; MYSUB detects an error and calls the system subroutine SYSTEM to generate a traceback. SYSTEM does the following:

1. Extracts from the entry line of SYSTEM the address portion of the EQ instruction, and subtracts one to get the address of the call to SYSTEM, 743

2. The low 18 bits of location 743 point to word 700, which contains the name of the invoking routine ("MYSUB"); the first lines of the traceback can now be printed:

```
SYSTEM
CALLED FROM MYSUB AT 000743
```
3. The low 18 bits of word 700 point to the entry line of MYSUB; the entry line contains an EQ instruction, so the procedure of steps 1 and 2 can be repeated: the address from which MYSUB was called is determined (120), the name of the calling routine is found ("MAIN"), and the next line is printed:

CALLED FROM MAIN AT 000120

4. The low 18 bits of the word containing "MAIN" point to a word which does not contain a EQ instruction; we have reached the main program, so the traceback is complete.
COMPASS

(FORTRAN)

main program

MAIN

line 5:

CALL MYSUB

user's (COMPASS) subroutine MYSUB

entry line

entry line

system subroutine SYSTEM

FIGURE 2
4.6 MICROS AND CODE DUPLICATION

So far, we have constructed a set of basic arithmetic macros; we have shown how they can be helpful in debugging, and we have modified them to include one higher-level language feature, mixed-mode arithmetic. In this section, as our final improvement, we shall implement another, more significant, feature of higher-level languages.

Suppose we want to compute the sum of the integer variable HEN and the floating point variable ROOSTER and leave the result, in floating point, in CHICK. In our macro language, we would write:

```
ILOAD    HEN
FADD     ROOSTER
FSTORE   CHICK
```

Compare this with the equivalent series of FORTRAN statements:

```
INTEGER    HEN
REAL       ROOSTER, CHICK
CHICK = HEN + ROOSTER
```

In our macro language, we must explicitly state for each operation the mode of the operand or the mode in which we want the result stored. In FORTRAN, on the other hand, the mode is made a property or attribute of the variable; in processing the assignment statement, the compiler uses the modes assigned to the variables involved to determine the instructions to be generated. We shall try to implement a similar arrangement in our macro language.

To do so, we must find a means of assigning an attribute to a symbol. We shall do this by associating with each symbol a second symbol, whose value indicates an attribute of the first symbol. For example, we could form the second symbol by suffixing the first symbol with an M: for a variable VAR, we would use the value of the symbol VARM to indicate the mode of VAR. To hide this apparatus from the user of our macro language, we supply two macros with which the user can indicate the mode of his variables:

```
INTEGER       MACRO       VAR
VAR=M          SET         0
ENDM
REAL          MACRO       VAR
VAR=M          SET         1
ENDM
```
Variable names are thus restricted to seven characters; if an eight-character name is used as the argument to one of these macros, a nine-character name will be generated, and hence an error message. Clearly symbols ending in M should also not be used; however, if the user forgets this restriction, and puts in his program

```
VARBM     SET     0
```

(When he already has a variable VARB) he will completely foul up code generation yet get no error message. To avoid this trouble, I shall tell you a secret, which you must promise not to tell the user of our macro language: any special character except + - * /, ^ or blank is allowed in a symbol name (the first character may not be $, = or a digit). Thus, we could use a $ suffix instead of an M; a user is less likely to use a $ in a name accidentally:

```
INTEGER   MACRO     VAR
VAR$       SET       0
ENDM

REAL      MACRO     VAR
VAR$       SET       1
ENDM
```

($ is a delimiter for macro parameters, so no catenation mark is required). This may all seem quite trivial, especially if you are writing a macro for your own use, but the importance of coding in such a way that bugs are avoided or caught early cannot be overemphasized. "An ounce of prevention is worth a pound of cure" is a severe understatement in programming.

Now that we have devised a means of recording the mode attribute, modification of the arithmetic macros is entirely straightforward. Each of our new macros will invoke the corresponding old integer or floating point macro, depending on the mode of the operand:

```
LOAD      MACRO     ADDR
IFEQ      ADDR$ ,0
ILOAD      ADDR
ELSE
FLOAT      ADDR
ENDIF
ENDM
```

150
ADD MACRO ADDR
 IFEQ ADDR$,0
 IADD ADDR
 ELSE ADDR
 FADD ADDR
 ENDF ADDR
 ENDM

SUB MACRO ADDR
 IFEQ ADDR$,0
 ISUB ADDR
 ELSE ADDR
 FSUB ADDR
 ENDF ADDR
 ENDM

STORE MACRO ADDR
 IFEQ ADDR$,0
 ISTORE ADDR
 ELSE ADDR
 FSTORE ADDR
 ENDF ADDR
 ENDM

If the user forgets to declare a variable INTEGER or REAL before it is referenced in an arithmetic macro, the associated symbol with suffix $ will be undefined, and an error message will result.

As a final veneer for our macro programming efforts, consider the task of modifying our INTEGER and REAL macros to accept lists of variables, like FORTRAN:

REAL FLOAT, SINK, BATHTUB
INTEGER ENRY, IGGINS

Many assemblers, including COMPASS, have some pseudo-instructions specifically for handling such lists. However, in order to illustrate the general capabilities of COMPASS for processing character strings, we shall initially code our fancy INTEGER and REAL macros using only the most basic character manipulating instructions. At the end of this section we shall consider how we might have spared ourselves all this effort by invoking one of the more powerful COMPASS pseudo-instructions. We shall first describe the algorithm for our fancy INTEGER macro in a very informal, hopefully self-explanatory manner. Then we shall take the algorithm, step-by-step, and translate it into COMPASS pseudo-operations. Our new INTEGER macro has one parameter, a
character string which should be a list of symbols; let us call this parameter LIST. A possible algorithm for this macro is

1. Let \(L \) = the character string LIST with the characters "," added at the end

2. Let \(\text{FIRST} = 1 \) and \(\text{CURRENT} = 1 \)

3. Let \(\text{CURRENT} = \text{CURRENT} + 1 \)

4. Let \(\text{CURRCHAR} = \) character number \(\text{CURRENT} \) of the string \(L \)

5. IF \(\text{CURRCHAR} \) is a comma,
 a. let \(\text{NAME} = \) the \((\text{CURRENT} - \text{FIRST})\) characters of \(L \), starting with character number \(\text{FIRST} \)
 b. invoke the old \text{INTEGER} macro with parameter \(\text{NAME} \)
 c. let \(\text{first} = \text{CURRENT} + 1 \)

6. If \(\text{CURRCHAR} \) is not a period, go to step 3;
 if it is a period, algorithm is done.

The loop (steps 3 through 6) scans the character string from left to right; \(\text{CURRENT} \) points to the character position currently being examined. When a comma is encountered (step 5) the characters in the string from position \(\text{FIRST} \) up to the character preceding the comma are put into \(\text{NAME} \); thus \(\text{NAME} \) will contain the name of the next symbol on the list. After the old \text{INTEGER} macro is invoked, \(\text{FIRST} \) is reset to point to the first character after the comma. The comma is appended to the string in step 1 so that the last list member will be processed; the period is added to mark the end of the string.

In order to be able to implement this in COMPASS, we have to introduce mechanisms for looping and for extracting substrings of character strings. The mechanism for looping or, more precisely, code duplication, is provided by the \text{DUP} pseudo-operation. The address field of the \text{DUP} may contain an integer, symbol, or expression; this number specifies how many times the following instructions, up to the next \text{ENDD} instruction, are to be duplicated. As a simple example, suppose we have an array of dimension 8:

\[
\text{ARRAY} \quad \text{BSS} \quad 8
\]

and we wish to set it to zero. One way of doing this is
The identical code be generated by coding

| MX6 | 0 |
| SA6 | ARRAY |
| A6+1 |

If the dimension of the array were assigned to a symbol

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SET</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARRAY</td>
<td>BSS</td>
<td>SIZE</td>
</tr>
</tbody>
</table>

the generation of code to zero the array can be controlled by this symbol:

MX6	0
SA6	ARRAY
DUP	SIZE-1
A6+1	

The third operation in this family is the STOPDUP. When a STORDUP is encountered in the range of a DUP, duplication stops with the current iteration, regardless of the count in the DUP instruction. The current iteration is completed — the following instructions up to the ENDD are assembled one last time. The STOPDUP is normally used with an IF instruction to control the number of times code is duplicated. For example, the above instruction sequence can also be coded
When duplication is to be controlled by a STOPDUP, the duplication count (here 1000) will normally be made so large that it will not be reached unless there is a coding error. The DUP and STOPDUP will enable us to implement the "loop" in our algorithm. The second mechanism we required for our algorithm was one to extract substrings from character strings. This facility is provided by the MICRO operation, which has the form

```
micro-name MICRO n1, n2, daaaaaaaaad
```

here n1 and n2 may be integers, symbols, or expressions; aaaaaaaaaa is any string of characters, and d, the delimiter character, is any character not appearing in aaaaaaaaa. The value of the micro-name after this operation is the n2 characters of aaaaaaaaaa starting with character position n1. For example,

```
NOW MICRO 1,3,*HOW ARE YOU*
```

assigns the character string "HOW" to the micro NOW. If n2 is omitted, the substring from position n1 through the end of the string is assigned; thus after

```
NOW MICRO 1,,*HOW ARE YOU*
```

NOW has the value "HOW ARE YOU ".

After the micro has been defined, the micro name may appear anywhere in any instruction; however, it will be recognized only if the name is immediately preceded and followed by the micro mark #. For example, if we define the micro

```
SETTWO MICRO 1,,+SET 2#
```

and then use it in

```
VARF #SETTWO#
```
COMPASS will first replace the micro by its value:

```
VARF  SET 2
```

and then assemble the instruction as usual. Micro substitution is performed at the same time as catenation (if there are any catenation marks in the line), after substitution for macro parameters but before any other analysis of the instruction. Thus, if we have the micro

```
SWEET  MICRO  1,,$+16$
```

and the macro

```
SETBI  MACRO  P1,P2
SB1    P1#P2#
ENDM
```

and then invoke the macro

```
SETBI  VARF,SWEET
```

then micro substitution will be performed

```
SB1    VARF+16
```

and finally the instruction will be assembled.

Micro names are not symbols. The value of a symbol is a number, while the value of a micro is a character string. Since references to micros are distinguished by the surrounding micro marks, it is possible to have a symbol and micro of the same name. Thus, with the definitions

```
SIX    SET    6
SOX    SET    8
SOX    MICRO  1,,+SIX+
```

the instruction

```
SB1    SOX
```

assembles to a SB1 8, while

```
SB1    #SOX#
```

assembles to a SB1 6.
With micro and DUP in hand, we are ready to start work on our algorithm. Before we do, we shall rename our old INTEGER macro "INTEGER .", so that we don't end up with two macros of the same name:

```
INTEGER    MACRO    VAR
VAR$       SET     0
ENDM
```

Our algorithm requires two integer "variables;" for these we shall use the symbols FIRST. and CURRENT. (we include a special character in these names so that the user of our macro language will not have a symbol of the same name). Our new INTEGER macro begins with the macro heading

```
INTEGER    MACRO    LIST
```

Step 1 assigns to L the string LIST with "." appended; this clearly calls for a micro:

```
L       MICRO  1,,$LIST,.$
```

In using $ as the string delimiter, we tacitly assume that there will be no $ in LIST itself. Step 2 initializes FIRST. and CURRENT.:

```
FIRST.  SET     1
CURRENT. SET    1
```

Steps 3 through 6 comprise the scanning loop, which we now know must begin with a DUP:

```
DUP   72
```

Duplication will be terminated by a conditionally-assembled STOPDUP (step 6); since there can be only 70 characters in a one-card instruction (columns 73 and after are ignored, and there must be blanks between location and opcode and between opcode and address fields), LIST will surely be less than 70 characters, hence L will be less than 72 characters, hence an iteration count of 72 will not be reached. Steps 3 and 4 are straightforward

```
CURRENT. SET     CURRENT.+1
CURRCHAR MICRO   CURRENT.,1,$#L#$
```

Remember that when a micro is used in the address field of another MICRO operation, both micro marks and a delimiter character are required, since the value of the micro replaces the
micro name and marks in the address field before the instruction is assembled.

Step 5 says "if CURRCHAR is a comma..." This test is basically different from those we have made before: it compares two character strings, rather than the values of two symbols or expressions. For testing character strings there is another IF operation, the IFC, whose form is

```
IFC relation,daaaaaadcccccd
```

where "relation" is any relational mnemonic (EQ, NE, GE, LE, GT, LT), "aaaaa" and "cccccd" are the two character strings being compared, and d, the first character after the comma, acts as the delimeter for both strings. As an example, the following macro will generate a store instruction only if the argument to the macro is "A":

```
STOA MACRO PAR
IFC   EQ,*PAR*A*
SA6   PAR
ENDIF
ENDM
```

The IFC test will succeed only if the argument is literally "A"; invoking the macro with another symbol of the same value

```
B      SET   A
STOA   B
```

will not cause the store instruction to be generated, since it is the argument name, and not its value, which is being tested.

Thus step 5 becomes

```
IFC   EQ,${CURRCHAR}${,$
NAME  MICRO  FIRST.,CURRENT.-FIRST.,${L}$
  INTEGER  #NAME$
FIRST  SET   CURRENT.+1
ENDIF
```

Step 6 uses an IFC to stop the scanning loop by assembling a STOPDUP:

```
IFC   EQ,${CURRCHAR}$.${
STOPDUP
ENDIF
```

Having come to the end of the loop, we finally terminate the range of the DUP:

ENDD

Collect the instructions we have written over the last few pages and we have

```
INTEGER   MACRO    LIST
  L    MICRO  1,$LIST,.$
FIRST.   SET      1
CURRENT. SET      1
    DUP     72
CURRENT. SET     CURRENT.+1
CURRCHAR MICRO CURRENT,.1,$#L#$
IFC       EQ,$#CURRCHAR#$,$
NAME      MICRO  FIRST.,CURRENT.-FIRST.,$#L#$
INTEGER  #NAME#
FIRST.   SET     CURRENT.+1
ENDIF
IFC       EQ,$#CURRCHAR#$,$
STOPDUP
ENDIF
ENDD
ENDM
```

Proud of our fancy new macro, we eagerly try it out:

```
INTEGER   A,BB,CCC
```

and are, to say the least, a little disappointed when all that comes out is

```
A$    SET     0
```

The trouble is that, the way we have invoked the macro, there appear to be three arguments. COMPASS matches the first one, "A", with the first parameter in the macro definition, LIST; since there are no more parameters in the definition, "BB" and "CCC" are ignored. If we want to include a comma (or blank) in a macro parameter, we must enclose the parameter in parentheses, thus:

```
INTEGER (A,BB,CCC)
```

In expanding the macro, the parentheses are removed and the text between the parentheses is substituted for the corresponding formal parameter in the macro body. Thus, the first line of the
macro becomes

L MICRO 1,,$A,BB,CCC,,$

and this macro call does indeed generate

A$ SET 0
BB$ SET 0
CCC$ SET 0

Our original goal was to write one such macro for INTEGER declarations and another for REAL declarations. Rather than code this sequence twice, we shall (what else?) write a macro with two parameters: the list, and the macro to be invoked for each item on the list (in the above case, INTEGER). In fond memory of a pseudo-operation in an earlier assembler which performed essentially the same function, we shall call this macro IRP (iterate prototype).

We will also require the two macros which IRP will invoke: INTEGER and REAL. And, finally, the two macros seen by the user of our macro language: INTEGER and REAL.

IRP MACRO MCNAM,LIST
L MICRO 1,,$LIST,,4
FIRST. SET 1
CURRENT. SET 1
 DUP 72
CURRENT. SET CURRENT.+1
CURRCHAR MICRO CURRENT.,,1,$#L#$
 IFC EQ,$#CURRCHAR#$,$
NAME MICRO FIRST.,CURRENT.-FIRST.,$#L#$
 $NAME$ #NAME#
FIRST. SET CURRENT.+1
 ENDF
 IFC EQ,$#CURRCHAR#$,$
STOPDUP ENDF
ENDD
ENDM

INTEGER. MACRO VAR
VAR$ SET 0
ENDM

REAL. MACRO VAR
VAR$ SET 1
ENDM
The parentheses around the list are removed when the list is substituted for VARLIST in the macro body; since the list must be enclosed in parentheses on the parameter list of the IRP call, we have to supply a fresh set of parentheses; hence "(VARLIST)".

Although our efforts at developing a macro package over the last few sections have been quite modest, relatively few programmers code macros as fancy as IRP. One factor is that those not very familiar with all the pseudo-operations believe they will spend more time debugging their macro than they could possibly save using it; unless the macro is being developed for general use, this argument is often valid. Another factor is that fancy macros assemble very slowly. In the case of IRP, the ten statements in the range of the DUP must be assembled once for each character in the list; an IRP with a list of six 7-character symbols expands to more than 500 instructions. As machine speeds continue to increase, this factor will decrease in importance, but it cannot be ignored. These problems notwithstanding, this example indicates how a "comprehensive" macro-assembler can be used to assemble a relatively sophisticated "higher-level" language.

Large, complex programs have an inherent tendency to get larger and more complex, particularly if they are heavily used; no matter how many features are included, there is always one more which someone would like to add. This is especially true when program designers are also constant program users, as is generally the case with assemblers (which are almost always written in assembly language). Features which the designer as program user finds useful can then easily find their way into the program.

The sequence of 6000 series assemblers (described on pages 53 and 54) certainly exemplifies this natural growth process. The first assembler manual -- for SIPROS ASCENT -- is a slim little thing describing 16 pseudo-instructions in four pages; the current COMPASS manual (version 3) needs more than 125 pages to describe its 80-plus pseudo-instructions. The largest increment, both in terms of number of pseudo-instructions (several dozen) and size of the reference manual (about one pound) occurred in the great
leap forward from version 1 to version 2 of COMPASS. A number of assembly-time operations which had proven particularly useful but which required complicated macros in version 1 were implemented as pseudo-instructions in version 2; among these was IRP.

In consequence, if you are diligent enough to punch and run the macros described above, you will be rewarded with the error flag "L" as follows:

L IRP MACRO MCNAM,LIST

and the explanation

L TYPE ERROR LOCATION FIELD BAD

What this means is that there already is an operation code IRP. If you consult your COMPASS manual, you shall discover that the IRP pseudo-instruction does pretty much the same thing our IRP macro was supposed to do. More precisely, if a macro contains the sequence of instructions

IRP LIST
 .
 .
 .
IRP

and LIST is a macro parameter whose value is a list of items separated by commas, the instructions between the two IRPs will be assembled once for each item on the list. Furthermore, if the symbol LIST appears in any of the instructions between the two IRPs, it will be replaced by the first item in the list the first time the instructions are assembled, by the second item the second time they are assembled, and so forth.

For example, the following macro will generate code to increment each variable appearing in LIST by INCR:

<table>
<thead>
<tr>
<th>INK</th>
<th>MACRO</th>
<th>LIST,INCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX2</td>
<td>INC</td>
<td></td>
</tr>
<tr>
<td>IRP</td>
<td>LIST</td>
<td></td>
</tr>
<tr>
<td>SA1</td>
<td>LIST</td>
<td></td>
</tr>
<tr>
<td>IX6</td>
<td>X1+X2</td>
<td></td>
</tr>
<tr>
<td>SA6</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>IRP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If invoked by
INK (BRIG, VISP, ZERMATT), 9

It will generate

SX2 9
SA1 BRIG
IX6 X1+X2
SA6 A1
SA1 VISP
IX6 X1+S2
SA6 A1
SA1 ZERMATT
IX6 X1+X2
SA6 A1

Returning to our arithmetic macros, we see now that they could have been written simply as

INTEGER MACRO VARLIST
 IRP VARLIST
VARLIST$ SET 0
 IRP
 ENDM

REAL MACRO VARLIST
 IRP VARLIST
VARLIST$ SET
 IRP
 ENDM

4.7 THE VALUE OF A SYMBOL

The object of this chapter, as I stated at the outset, has been to present the principles and potentialities of assembly language macro programming. It is not the object of this chapter to replace the COMPASS reference manual; this would be pointless if not impossible, since COMPASS is still a growing language. If I have been successful, you should now have little difficulty in learning the rules and restrictions of COMPASS, the operations we have not discussed and variants on those we have, as you need them from the reference manual.
I must confess, though, that there is one point on which I have intentionally been less than candid until now: the value of a symbol. As we have said several times, the value of a symbol is a number; however, there are numbers and there are numbers. The rest of this section will explore the wisdom of this last remark.

In the earliest systems, the addresses which a program would occupy were fixed at assembly time. The user would tell the assembler that the program would be loaded into memory at execution time starting at location 100, for example. Then, when the assembler encountered a JP Q, where Q was the label on the second word of the program, the assembler would generate a JP 101. This arrangement, known as absolute assembly, was simple but not very satisfactory; if the first routine in a program was made one word longer, all the other routines would have to be reassembled to start one location higher.

To eliminate this problem, the relocatable assembly was devised. In this scheme, the assembler assembles the program as if it were to be loaded starting at location 0; at the same time, it flags those instructions which reference labels in the program (for example, JP Q but not JP 7). A special routine, called the loader, is added to the system to read assembled programs into memory. The user can specify to the loader where in memory his program is to be loaded. Suppose the loader starts loading the program at location 100; then whenever it reads in an instruction which has been flagged by the assembler, it adds 100 to the instructions before storing it. In this way our JP Q, which was translated by the assembler into JP 1, would end up as JP 101, as before.

In a relocatable assembly the user can also reference an external symbol, i.e., a symbol in another routine. An instruction referencing such a symbol is marked by the assembler with the name of the symbol. When this instruction is loaded, the symbol name is recorded on a table; when the loader encounters an entry point of this name while loading another routine, it goes back and fills in the address in the first instruction.

So far we have three kinds of addresses: absolute addresses (i.e., constants, which are not relocated), (program) relocatable addresses, and external addresses. When we come to FORTRAN IV, the situation is further complicated by labeled common. As long as all variables were local (part of the subprogram being compiled), the compiler just needed one counter to keep track of the address to assign to the next statement or variable. If words 0 through 704 (relative to the beginning of the program) had been used, this counter would be at 705; to process
the compiler would assign words 705 to 714 to A, words 715 to 724 to B, and leave the counter at 725. With labeled common, the compiler has to maintain a separate counter for each block. When the first declaration for block A is encountered,

COMMON /A/F,G

the compiler assigns F to word 0 relative to the start of common block A, G to word 1, and leaves the counter for block A at 2. This may be followed by a declaration of a block B:

COMMON /B/LINE

a counter for B is set up as a result. Still later the program may continue the declaration for A:

COMMON /A/J,I

The compiler must then return to the counter for block A, allocating H to word 2 relative to the start of common block A, etc.

Common blocks may be declared by COMPASS by means of the USE pseudo-instruction, which has the form

USE /block-name/

This instruction tells the assembler to start using the counter for common block "block-name." For example, the FORTRAN declarations

COMMON /A/F,G
COMMON /B/LINE
COMMON /A/H,I

would be coded in COMPASS as

USE /A/
F BSS 1
G BSS 1
USE /B/
LINE BSS 1
USE /A/
H BSS 1
I BSS 1
USE 0

164
The instruction SAI H would then be translated into SAI 2 and marked common relocatable with common block name A. The loader would set aside four words for block A, and add the starting address of block A to all instructions marked with that block name. The final USE 0 specifies that following code is to go into the usual, program relocatable, block.

Thus we have four kinds of addresses the loader will recognize: absolute, program relocatable, common relocatable, and external. What restrictions does this imply for assembly language coding? In the first place, every address expression must fit into one of these four types. For example, if A and B are program relocatable symbols, the instruction

```
SBI A+B
```

is unacceptable because there is no way of indicating to the loader that twice the address of the start of the program is to be added to the instruction. On the other hand,

```
SBI A-B
```

is acceptable since the difference of two program relocatable symbols is an absolute expression.

Second, the value of the operands of some pseudo-instructions must be determined at assembly time; these operands must be absolute expressions. One such instruction is DUP:

```
DUP A
```

where A is relocatable, is an error, since the assembler cannot wait until the program is loaded to decide how many times to duplicate the following code.

The remaining restrictions on the use of symbols hinge on whether they are defined or not. This question is often confused by the fact that "defined" may mean two different things. By considering the modus operandi of the assembler, we should be able to make all these restrictions clear and logical.

Consider the problem an assembler faces in processing

```
JP THERE
THERE PS
```

The problem is quite simple: when the assembler encounters the JP instruction, it has no idea what the value of THERE is, so it
cannot generate any code. Yet we know the assembler handles such a sequence; what does it do? The solution is equally simple: it reads through the program twice. The first time it decides how much space each instruction occupies, and thus determines the value of every symbol; the second time through it knows the values of all symbols, so it can evaluate address fields and generate code. Each reading through of the source program is called a pass; thus COMPASS, and nearly every other assembler, is a two-pass assembler.

Any expression that affects the amount of code to be generated must be evaluated in pass one. Such an expression may therefore contain only previously defined symbols, i.e., symbols whose value can be determined from the portion of the program already read. Expressions on which this restriction is imposed include the repetition count in DUP instructions, the word count in BSS instructions, and the two expressions which are compared in the various IF instructions. If you look back over the examples in this chapter, you will notice that we have been careful to define symbols (usually by SET instructions at the beginning of the program) before they were tested by IF instructions.

Expressions which do not affect the amount of code generated, principally the address fields of machine instructions, are evaluated during pass two. These expressions may reference any permanently-defined symbol (any symbol defined by its appearance in the location field of a machine instruction or BSS), since the values of such symbols are recorded during pass one. The values of SET-defined symbols, however, cannot be saved from pass one to pass two, since these symbols may take on many values in a program. Such symbols are therefore reset "undefined" at the beginning of pass two, and remain undefined until the first SET instruction for this symbol is encountered. Consequently, SET-defined symbols may not appear in any expressions unless they have been previously defined.
CHAPTER 5

DEBUGGING

5.0 INTRODUCTION

A large portion of the time devoted to program development is spent in correcting errors (bugs) that occur in a program. The process of locating and fixing these bugs is known as debugging. Debugging can be, and usually is, the most tedious part of programming. It is a task that is very rarely escaped, and for the beginning programmer, it is a frequent ritual. Debugging also tends to be an ongoing process, mostly due to poor initial program design, little forethought, and inadequate testing on the part of the programmer.

Bugs fall into two major categories: syntax errors and logic errors. Most compilers and assemblers assist the programmer with syntax errors by pointing out the type of error present and the statement in which it occurs. Some compilers even correct syntax errors. These aids enable the programmer to quickly and easily fix these types of bugs.

On the other hand, logic errors are often hidden deep within the inner workings of a program, and their effects may not be detected immediately after their generation. For example, a division may produce an indefinite, but the program will not abort until this value is used in another arithmetic operation, which may be many instructions later, or even in another subroutine. Logic errors may also be intermittent, that is, they may cause the program to fail only under certain conditions. For these reasons, logic bugs give the programmer a much more formidable challenge than do syntax errors.

Compilers and assemblers do not offer any aid to the programmer for finding logic bugs; bugs of this type require special techniques. These techniques vary with the power of the programming language used by the programmer. Since assembly language is a low-level language with no I/O primitives, its fundamental debugging technique is the examination of register
and memory contents. Through this examination, the debugger can trace erroneous values to the instruction that produced them.

In the past, this examination was done by physically entering memory addresses into a computer by sense switches and reading their contents from a panel of lights located on the computer. This technique required the programmer to have full use of the computer while he was debugging. For a machine the size of the 6600, which costs several dollars a minute to operate, this approach would be expensive. In its place, computer manufacturers have developed a number of debugging aids. These aids range from register and memory dumps to interactive debuggers which allow the user to examine registers and memory, as well as change their contents, while the program is executing.

Two important tools, the assembly listing and the load map, are needed by the debugger before any attempt is made to find bugs. These tools display the memory layout of the program, allowing the programmer to determine which registers and memory locations are of interest. The first part of this chapter will discuss these tools, and the second will discuss the debugging aids available to the COMPASS programmer.

5.1 THE LISTING

Generally, assembly listings generated from COMPASS subprograms consist of at most five sections. These sections are (in order of appearance): the header page, the octal and source listing, assembler statistics, the error directory, and the symbolic reference table. Each of these sections, with the exception of the error directory, appears for each subprogram in the source text. The name of the subprogram appears at the top left-hand corner of each page belonging to that subprogram. Pages A1-A4 (Appendix A) show a typical listing.

The header page (A1) is analogous to a table of contents. It designates the major sections of code that are defined in the subprogram, specifying the name, starting address, and length of the subprogram; the names, types, starting addresses, and lengths of the blocks; the names and addresses of the entry points; and a list of all external symbols defined by the EXT pseudo-op. Blocks that appear in the subprogram are usually
common data blocks or program blocks. The name PROGRAM refers
to the primary block of the subprogram, the block into which all
instructions and data are put if no USE pseudo-instruction
appears. If the subprogram does not contain any common
instruction blocks, the block usage description does not appear.

The octal and source listing (A2) is the most informative section
of the listing. Each line of the source text is printed
alongside the octal code generated for the instruction.
Instructions that are packed into one word are displayed in an
indented fashion, each successive instruction being indented
further. The first instruction packed into a word is preceded by
the relative address of the word in which the instructions are to
be stored. Notice that no-ops used to fill words are not
displayed.

If an instruction contains an address, the octal code may be
suffixed by a +, C, or X. These flags indicate how the address
is to be treated when the code is being loaded. The "+" indicates
that the address is relocatable. The "C" means that the
address references an element in a common block. The "X"
indicates that the address is external to the subprogram.

If any syntax errors occur in a source statement, a flag appears
on that line, in the left hand margin. The flags are single
letters. It is possible to have more than one flag appear for a
single source statement. Some examples of syntax error flags
appear on the listing on page A2.

The assembler statistics appear immediately following the octal
and source statement listing. The statistics give information
about the size of the subprogram, and the length of time required
to assemble it. They are of little interest to the debugger.

The error directory (A3) appears only if syntax errors occur in
the source text. Each type of error flag in the octal and source
statement listing is displayed with a brief description of the
error and the pages in which the error occurs.

The symbolic reference table (A4) is a quick index into the
subprogram. It aids the programmer in both debugging and code
modification. Each symbol used in the subprogram appears in the
table with its value and a series of page/line references. The
references specify the pages and lines on which the symbol
appears. Some of the page/line references are postfixed by a
flag. The flags and their meanings follow:
DEBUGGING

D Symbol definition statement (EQU or SET)
E Symbol defined as an entry point
F Symbol is used in condition test
L Symbol used in location field
S Symbol used in store instruction (SA6 or SA7)
X Symbol defined as external

If a "U" prefixes a symbol's name, the symbol is undefined, implying one of three conditions: the symbol was not declared external, its definition was omitted, or the symbol is a typographical error.

5.2 THE LOAD MAP

A binary file produced by a compiler or an assembler from a source program is not yet in a form that is executable. The compiler or assembler has coded each common or program block separately, with each one beginning at address zero. Since blocks cannot be in the same memory locations, they must be relocated (see section 4.7). Also, many library routines that are referenced but not included in the source program must be added (for example, math routines such as SQRT and SIN and FORTRAN I/O routines). The addition of library routines, linking of subroutines, relocation of blocks, and all other tasks necessary to get a binary file into executable form are done by the loader.

For each common and program block in the binary file and for added library routines, the loader allocates a block of memory. The first location of a memory block is called the starting address of the common or program block. These starting addresses are used by the loader to adjust the relocatable, external, and common addresses referenced in the program blocks. The type of adjustment is specified by the flag on the octal and source statement listing. The address at which the entire program starts is called the first word address (FWA).

A load map displays the relocation information. It gives the name of each block plus its starting address and length, the name of the file containing the binary code, the date the binary code was created, and other miscellaneous information about the block. Blocks are printed in ascending order of starting addresses. The load map is produced by the control card MAP (PART), which may

170
appear anywhere prior to the invocation of the loader. (Some systems automatically produce a load map.)

Page A9 contains the load map for the FORTRAN program on page A5 and the COMPASS routine on pages A6-A8. Looking at the map, we see that the common block VECTOR is loaded at the lowest address, 111 (user defined common blocks are always loaded before the first routine which references them). The routine VECLIB is loaded at location 2232 and consists of 15 words of instructions and data. As VECLIB is being loaded, the loader adds the starting address, 2232, to each relocatable address. For example, the assembler generates 0400000012+ for the EQ LOOP1 instruction at the bottom of page A6, but when the routine is relocated the loader adjusts the code to 0400002244 (2232 + 12). Note that most of the load map consists of "library" routines that have been added to the original binary file (LGO).

5.3 THE DUMP

The most basic debugging aid available to the COMPASS programmer is the dump. A dump is a print-out of the contents of consecutive memory locations. The range of locations printed is stated on the first line of the dump. The contents of four locations are printed on each line, with the address of the first location printed on the left hand side of the page. The message "duplicated lines" appears if successive groups of four locations have the same value as the last group that was printed.

The dump is generated by the control card DMP (start,end); the parameters (octal values) specify the starting and ending memory locations of the dump, respectively. If only one parameter is given, a dump is produced that starts at the first word address (FWA) and terminates at the parameter value. Page A10 illustrates a dump produced by the control statement DMP (100,200).

The dump gives the debugger "postmortem" information, that is, values in memory at the time of program termination (either normal or abnormal). Although the dump does not indicate how these values change during execution, it can give the debugger some clues in finding bugs. For example, the COMPASS routines shown on pages A7 operate on the vector VEC. If we suspected
that one of these routines was malfunctioning, we could use a DMP command to print the final value of this vector. VEC is in the common block VECTOR at the relative address zero. Looking at the load map (A9), we see that VECTOR's starting address is 111. Therefore, we can include a DMP control card with appropriate parameters to see if the correct values are present in the vector. (DMP(111,123) would do the trick if the vector were ten elements long.) By examining the dump, we can determine if the values seem totally incorrect, or if something more subtle has occurred, e.g., only nine partial sums were computed instead of ten. (This error is frequent, and is known as the off-by-one bug.)

A dump is also produced by the operating system when a program terminates abnormally (see example on page A16). It is 100 octal memory locations in length, with the instruction that caused the program to terminate in the middle. Preceding the dump are the contents of the first two words of the user's memory area, RA (reference address), and RA+1. Bits 30-47 of RA are of special interest to the debugger. They specify the memory location of the next instruction word to be executed when the program terminated. The instruction causing termination, therefore, is in the previous word. (On a machine having multiple functional units, like the 6600 (see section 6.1), the instruction causing termination may be located in one of a few previous words.) Above RA and RA+1 is the exchange package. The exchange package gives the values in the registers at program termination, the contents of the memory addresses stored in the A registers, and a series of program parameters. The only program parameter of interest is the field length (FL).

A dump produced by the operating system is very useful to the debugger, and can often lead directly to the instruction causing the program to terminate. This is possible because the register values printed in the exchange package are the values in the registers at the time of the error. Thus, by inspecting these values, important leads can be discovered.

Pages A11-A14 show a COMPASS function WORDS for computing the number of words in a sentence, along with a FORTRAN main program which calls WORDS. Unfortunately, as the dayfile on page A17 shows, this program "bombs out" with a CM OUT OF RANGE message. Let us consider how we would track down the source of this error. The dayfile message means that the program referenced a memory location outside of its field length. Either the program branched to an address outside the field length, or one of the A registers has been set to a value greater than or equal to the field length. Looking at the exchange package (A16), we compare
the field length (FL) with each of the A registers (except of course A0, since assigning a value to A0 does not cause a memory reference). We see that FL is 15200, and the address in Al is 15236. This tells us that the instruction that terminated the program was a SA1.

Now our job is to find the SA1 instruction. Looking at page A16, we see bits 30-47 of RA contain 4564 (we could also have obtained this address from the dayfile message, CPU ERROR EXIT AT 004564). Since our program was executed on a Cyber 720, which does not have multiple functional units, we know that the instruction causing program termination is in location 4563. Examining the load map, we note that the largest starting address less than 4563 is that of WORDS, 4556. By subtracting the two values, we find that the instruction is in the program WORDS at relative address 5. Looking back at the listing (A13), we see that word 5 contains a SA1 A1+B2; our culprit is found!

5.4 REGDMP

Using the dump and exchange package, we were able to find the instruction that contained a bug, but this did not give us any clues about the cause of the bug. However, we must realize that any postmortem data about a program gives little information about dynamic changes in register and data values. Also, if a program terminates normally, but produces wrong answers, postmortem dumps may be of no help at all.

Thus, a more dynamic way of examining registers is needed -- a method of looking at the values of registers while the program is executing. This is not a trivial task. Any program that is going to allow us to look at the contents of the registers must use the registers itself, but we do not want the contents of the registers to be altered. Impossible you say; well, it isn't. Appendix B contains a routine called REGDMP and its output routine that do the job. REGDMP is a utility that saves the contents of all 24 registers, calls a FORTRAN routine to print their contents, and then restores the previous register values. It is a very cleverly designed routine, and the reader is invited to peruse the code.

To use REGDMP, it must be first declared external to the subprogram. The debugger can then call the routine before or
after any instruction under suspicion (assuming that \texttt{REGDMP} has been installed in your system library). The output lists the location from which the call was made, the number of times the routine was called, and the contents of the 24 registers. We continue the "bug hunt" from the previous section to show how \texttt{REGDMP} is used.

We found that the \texttt{SA1 A1+B2} instruction terminated the program, but we are still unsure of the underlying cause of the error. We need to examine the values being assigned to \texttt{A1}. Placing a call to \texttt{REGDMP} before the loop gives us the initial address of the array being searched; this is necessary for comparisons to subsequent values of \texttt{A1}. A second call to \texttt{REGDMP} is placed after the \texttt{SA1 A1+B2}. The output of this call gives the needed information about the dynamic changes in \texttt{A1}. (Page A18 shows the code with the \texttt{REGDMP}s added.)

The output of the \texttt{REGDMP} (A19 = 20) displays the changes to \texttt{A1}. The first gives the initial value with subsequent \texttt{REGDMP}s giving values generated in the loop. The program \texttt{WORDS} is designed to search through successive elements of an array, but we see from the values of \texttt{A1} that it goes through the array in leaps and bounds.

The bug has been found: \texttt{A1} is being assigned its previous loop value plus the increment value of \texttt{B2}. This produces larger and larger addresses, causing the program to eventually access a location outside its field length. (Note that if the array were smaller, the program would not have aborted, but simply have given incorrect results; in this case, the described technique would still succeed.) We can fix the bug by replacing the \texttt{SA1 A1+B2} with \texttt{SA1 A1+1}.

\section*{5.5 Remarks}

The scenarios of the previous sections describe techniques using the available debugging aids. Considerable practice is required before one can master them. For this reason, debugging is often called an art. The skillful debugger, like the experienced detective, learns to enjoy the hunt and to remember the significance of the many different clues he has seen.
The best form of debugging, though, is good programming. A thorough understanding of a problem and its inputs, plus careful program design decreases the amount of debugging. Well-designed and commented code helps in finding and correcting bugs. Programs with many branches and devious bits of code often make modifications difficult, and can lead to more bugs.
CHAPTER 6

OPTIMIZATION

6.1 MACHINE ARCHITECTURE AND CODE OPTIMIZATION

The goal of this chapter is as modest as that of the last: to describe those features of the 6000 (Cyber 70 Model 74) which the programmer can take advantage of in optimizing his program. We shall not discuss the 6200 or 6400/6500 central processors (Cyber 70 Models 72 and 73) or the Cyber models 171-174, 720, and 730; the optimization possible on these machines is rather limited, and the few pertinent rules are included in both the COMPASS and hardware reference manuals. Nor shall we consider all the details of 6600 instruction timing; this would in fact be quite difficult because 6600's are not all identical in some aspects affecting timing.

The high speed of the 6600 is due in good part to two unusual features of the central processor: multiple functional units and an instruction stack. The 6200, 6400 and 6500 central processors (and Cyber 72, 73, 171-174, 720 and 730), like most computers, have a "unified arithmetic unit," a single "box" of electronics which executes all instructions. As a result, instructions are executed sequentially (i.e., one at a time). In contrast, in the 6600 central processor the hardware to execute the instructions has been divided into several functional units, each of which can execute a few of the central processor instructions. Each functional unit can only handle one instruction at a time, but several units can be operating concurrently. Thus, if two instructions in sequence do not require the same functional unit, and the result of the first instruction is not used as an operand of the second, the two instructions can execute in parallel.

The control unit in the central processor decodes (analyzes) the instructions to determine the functional unit, operand, and result registers required, and dispatches the instructions to the appropriate functional unit. To keep track of all the functional units and the registers they require, it uses a complex maze of registers called the scoreboard. The following outline of the stages in the execution of one instruction gives some idea of the scheduling problems involved:
1. Decode instruction, determine functional unit, result and operand registers;

2. If functional unit is busy (executing another instruction) wait until unit is free;

3. If result register is reserved by another functional unit which is currently busy and which will store its result in this register, wait until the other functional unit stores its result;

4. Pass instruction to functional unit (this is called "instruction issue");

5. Reserve result register for this functional unit, so that a subsequent instruction which uses that register will wait until the current instruction has been completed;

6. Functional unit waits until operands are available (until operand registers are not reserved, as defined in step 3);

7. Instruction is executed by functional unit;

8. Functional unit stores result in result register and clears the reservation of that register.

The control unit can decode and issue an instruction every minor cycle (100ns), so the 6600 has a theoretical limit of 10mips (million instructions per second). Register and functional unit conflicts in typical unoptimized code reduce the speed to something like 3mips. Careful optimization, by reducing register and functional unit conflicts, can sometimes double execution rate, to around 6mips.

The 6600 has ten functional units: branch, Boolean, shift, long add, floating add, divide, (2) multiply, and (2) increment. The multiply and increment units are duplexed; that is, there are two identical functional units of each kind, and an instruction is issued to whichever unit is free. The instructions executed by each functional unit and the execution time for each instruction are tabulated for the convenience of the reader in the last section of this book.
A few general observations can be made about these execution times. One is that branch instructions are abysmally slow; the 6600 is one of the few machines which takes longer to branch than to perform a floating point multiplication. An X-register branch, for example, usually takes 15 minor cycles (1500ns) if the branch is made, and 14 minor cycles if the branch is not taken. During those 14 or 15 cycles, no other instructions are issued. Consequently, an efficient programmer will avoid using branch instructions when equivalent sequences without branches will do as well; a prime example is the absolute value function (see section 3.14). Under certain circumstances jumps will take less time; these conditions will be discussed at the end of this section.

Another significant observation is that, relative to the other instructions, a load from memory takes quite a long time. The set-A instruction executes in three minor cycles; an additional five cycles are required to fetch the word from memory (more if there is a conflict with other memory accesses), so that a total of eight cycles is required to perform a load. As a result, the load instruction should generally not be placed immediately before the instruction which uses the word loaded; whenever possible, the load should be placed a few instructions earlier, so that the memory fetch is overlapped with other calculations. For example, suppose our program must jump to EXIT if either B1 is negative or the contents of SWITCH are non-zero. Until now, we would have coded:

```
NG   B1,EXIT
SAI  SWITCH
NZ   X1,EXIT
```

If the NG branch is not taken, the program must wait eight cycles after the NG is completed until the X1 load is finished and the NZ instruction can start. If we put the load first, however,

```
SAI  SWITCH
NG   B1,EXIT
NZ   X1,EXIT
```

all but one cycle of the load operation is overlapped with the NG instruction; unless the NG branch is almost always taken, the second sequence is faster.

These simple rules go only a short way towards maximizing instruction overlap. A high level of optimization is usually achieved only through a lengthy procedure, which starts with a timing analysis of the code sequence, tabulating instruction
issue, execution start, result available, and functional unit free times for each instruction. This analysis is then scrutinized to determine where the greatest delays occur; instructions are then reordered or registers reassigned to reduce the delay, and the timing analysis is repeated.

We now turn to the other unusual feature of the 6600 central processor: the instruction stack. The stack is a set of eight 60 bit registers, called I0 through I7. During the sequential execution of instructions (no transfers), I1 holds the current instruction word, I2 through I7 contain previously executed instruction words, and I0 contains the next instruction word:

Instruction word
from location

After all the instructions in the current instruction word have been issued, the contents of each I register are moved into the next-higher-numbered register; the contents of I7 are lost, and the next instruction word from memory is brought into I0:
Normally, when a transfer is made the stack is "flushed" (all its entries are cleared), and the instruction word at the transfer address is brought into I0, and from there into I1. If the target instruction word is already in the stack, however, no memory reference is necessary; the current instruction word pointer is simply reset to point to the I register containing that word. For example, if an instruction in location 100 causes a transfer to 73, the pointer will be set to I6:

```
contains contents of location

72       17
73       16
74       15
75       14
76       13
77       12
100      I1 EQ B1,B2,73
101      I0
```
This will happen whenever a loop of seven or fewer instruction words (an "in-stack loop") is being executed. As long as the program remains in this loop, all instructions are taken from the stack. Since an in-stack branch need not wait for a new instruction word to be fetched from memory, it takes much less time (600ns less) than an out-of-stack branch. In addition, while in the loop no delays are possible due to instruction fetches. Short program loops may therefore be speeded up significantly if they can be made to fit into the stack.

There are several means for shortening loops which almost fit into the stack. The most obvious method is the removal from the loop of instructions which can just as well be executed before the loop begins. Setting registers outside the loop will also often be helpful. Even if this does not eliminate an instruction in the loop, it may be possible to replace a 30 bit with a 15 bit instruction. A SB1 B1+1 inside a loop, for example, can be replaced by SB7 1 prior to the loop and SB1 B1+B7 in the loop.

Finally, we should note that the unconditional branch instructions always flush the stack, even if the target instruction word is in the stack. The RJ and JP instructions therefore cannot be part of an in-stack loop (this is the reason for using EQ B0,B0,... everywhere instead of JP).

The 7600 uses the same techniques as the 6600 for increasing processor performance—multiple functional units, instruction overlap, and an instruction stack. As a result, most of the techniques described above for optimizing 6600 code are applicable to the 7600 as well. The main difference of the 7600 design is that the functional units are pipelined. A pipelined instruction unit is divided into stages corresponding to the steps required to perform the instructions. The clearest example is floating-point addition, which must be done in four steps: subtracting exponents, shifting one coefficient, adding coefficients, and possibly shifting the result by one bit. In executing one instruction, the operands come in at one end of the "pipe", they move through these four stages, and a result comes out at the other end. The advantage of a pipelined unit is that several pairs of operands can be in the unit, at different stages of processing, at the same time. Once a pair of operands has moved from stage one to stage two, a new pair of operands can be accepted into the first stage. For example, floating addition on the 7600 requires four cycles (110 ns); if there are several successive floating point addition instructions, the first one could start at cycle n, producing a result at cycle n+4; the second could start at cycle n+1, producing a result at cycle n+5; the third could start at cycle n+2, etc. Most 7600 functional
units can accept new operands every cycle; the multiply unit accepts new operands every second cycle, and the divide unit (which is not pipelined) every 18th cycle. The internal design of the 7600 has been carried forward to the Cyber 70 model 76 and the Cyber 170 models 175, 176, 750, and 760.

6.2 OPTIMIZING THE PROGRAMMING EFFORT

The difference between optimization in the small and optimization in the large is the difference between good coding and good programming. We have briefly considered the former in the last section; in this final section I shall venture a few words on the latter.

Efficient program development is largely a matter of exercising good judgment in program design and choice of implementation; as such, it cannot readily be reduced to a set of hard and fast rules. It is usually learned only through bitter experience, when it is learned at all. The most I can hope to do in these last few pages is to make the experience a little less bitter by repeating some warnings I have made before on three points:

1. Design carefully. One of the most common failings of program planners is an optimism concerning programmer ability, which obscures the ease with which even the best programmers can founder in a mass of detail. Even major computer manufacturers with years of experience regularly plan systems an order of magnitude more complex than earlier systems, and then are surprised when they are "ready" years late, if at all, and still contain an order of magnitude more bugs than the earlier systems.

This is not to say that ambitious projects never succeed, but rather that they require careful planning to eliminate needless detail, to develop a simple structure for the entire program, and to prepare complete documentation for the system.

2. Use the appropriate language. If you have digested the last six chapters -- and, more important, have coded enough routines on your own -- you now possess two of the most important skills of any programmer: machine language and macro programming. I hope you have also gained some appreciation for what I feel to be the beauty of this machine and the elegance of some of the tools, such as the macro. Still, one must keep in mind that programming languages are only tools, each with its proper role.
OPTIMIZATION

When a suitable high-level language is available, use it; it will make the program easier to write, debug, modify, and read. "Descend" to assembly language when time or space requirements are critical, as they often are in system routines, or when no high-level language is suitable. Use macros whenever appropriate, not just to shorten the source program, but to indicate aspects of the structure of your program.

3. Optimize code only where necessary. Some people find (timing) optimization a lot of fun, but good optimization is very time-consuming (for the programmer) and the resulting code is generally harder to debug, modify, and read. Do it only for code which will be executed very often, such as the SQRT routine or the inner loop of a matrix multiply. And keep in mind that there is another kind of optimization -- minimization of space required -- which is more important for the many system routines which are loaded into memory very often, but executed infrequently (initialization and error routines, for example). Space optimization is generally a matter of register allocation and subroutine design and is, except in the most extreme cases, less tedious than time optimization.

Above all, some perspective and common sense are needed in deciding when and how to optimize. A good system designer is willing to sacrifice some efficiency in individual routines in order to have a cleanly structured system which can be debugged faster and maintained more easily. Don't become one of those people who are so obsessed with saving computer time that they forget that computers are supposed to save people time.
EXERCISES

Given below are twenty-five simple exercises in assembly language programming; these are presented as specifications for subroutines, functions, or macros. The first fourteen can be done after reading Chapter 3, the next seven after Chapter 4. I have intentionally not keyed these exercises to individual sections, since many exercises that can be done after reading part of a chapter may profitably be recoded into more efficient routines after progressing further in the text. The last four problems are related to the discussion of the Compare and Move Unit, section 3.16, but they can all be done on a machine without a CMU.

Solutions to a few exercises which I found of particular interest are included at the end. Readers may also wish to write some of these routines in FORTRAN, and compare the code generated by the compiler with their own assembly language versions. (Both the RUN and FORTRAN Extended compilers will optionally produce a listing of the generated code).

1. Write a function INDEX with three arguments:

 INDEX (ITEM, LIST, LENGTH)

 where LIST is a one-dimensional array of LENGTH words, whose value is the index of the first occurrence of ITEM in LIST, starting with LIST (1); if ITEM does not appear in LIST, INDEX returns 0. Stated another way, INDEX returns n if LIST (n) = ITEM and LIST(1) through LIST(N-1) are all ≠ ITEM.

2. Write a subroutine SORT with two arguments:

 SORT(LIST, LENGTH)

 where LIST is a one-dimensional array of LENGTH words containing integer values. Sort should rearrange the elements of LIST into ascending sequence, with LIST(1) containing the smallest element.

Remark: Any sorting algorithm will be satisfactory. For those not familiar with any sorting methods, may I suggest an exchange sort, which could be coded in FORTRAN as follows:
EXERCISES

LM1 = LENGTH-1
DO 10 I=1,LM1
IP1 = I+1
DO 10 J=IP1,LENGTH
IF (LIST(I).LE.LIST(J)) GO TO 10
ITEMP = LIST(I)
LIST(I) = LIST(J)
LIST(J) = ITEMP
10 CONTINUE

Of course, the assembly language version of this routine should require fewer memory references. Not only is it possible in assembly language to interchange the contents of two variables without using a third, temporary variable, but it is also possible to keep LIST(I) in a register through the loop on J (so that at most one load and one store are required for each iteration of the inner loop).

3. Write a subroutine TRANSPO with two arguments:

TRANSPO(MATRIX,N)

where MATRIX is an N*N array. TRANSPO should replace MATRIX with its transpose (i.e., interchange every pair of off-diagonal elements MATRIX(L,J) and MATRIX(J,L)).

Remark: This is essentially an exercise in efficient array indexing. Plan your choice of indices carefully before starting to code so that the number of operations in the inner loop will be minimized.

4. Write a function NFACT of one argument

NFACT(N)

which returns the value of N factorial (if N=0, it returns 1).

Remark: If the integer multiply feature is not installed, the usual FORTRAN loop for factorial,

NFACT = 1
DO 10 I=2,N
10 NFACT = NFACT*I

186
will most likely generate code to pack NFACT before each multiplication and unpack the product. Your assembly language routine can maintain NFACT in "packed" format (i.e., as an unnormalized floating point number) and only unpack the final result.

5. Write a function EXP of one argument:

\[\text{EXP}(x) \]

which returns the value of \(e^{**x} \)

Remark: Use the series expansion for the exponential function,

\[\exp(x) = 1 + x + x^{**2}/2! + x^{**3}/3! + \ldots \]

Keep adding terms until the current term divided by the sum of all previous terms is less than a given number, say 1.E-10.

Remark: If you encounter difficulties for large negative values of \(x \) (due to the finite precision of the floating point arithmetic), compute \(\exp(\text{abs}(x)) \) and then use \(\exp(-x) = 1/\exp(x) \).

6. Write a function STDDEV of two arguments:

\[\text{STDDEV}(\text{DATA}, L) \]

where \(\text{DATA} \) is a one-dimensional array of length \(L \) containing floating point values. \(\text{STDDEV} \) should return the standard deviation of the elements of \(\text{DATA} \), defined as

\[\{(1/(L-1))\sum (\text{DATA}(i) - \overline{\text{DATA}})^{**2}\}^{**(1/2)} \]

where \(\overline{\text{DATA}} \) is the average of the elements of \(\text{DATA} \), and the sum ranges over \(i \) from 1 to \(L \).

Remark: To evaluate the formula given above, the routine must go through \(\text{DATA} \) twice, first to compute the average and then to compute the sum of the squares of the differences from the average. This formula can be rewritten as

\[\{(1/(L-1))\{(\sum \text{DATA}(i)^{**2} - (\sum \text{DATA}(i)^{**2}/L))\}^{**(1/2)} \]
EXERCISES

Using this second formula, the standard deviation can be computed after one pass through DATA, in which both the sum and sum of squares are computed.

Remark: As the final step in the routine, to compute the square root, one can call the FORTRAN library SQRT function, just as one would in a FORTRAN routine. Don't forget to include an EXT SQRT in STDDEV.

7. Write a function MULT of two arguments:

\[
\text{MULT}(N1,N2)
\]

which returns the 60 bit product of the integers \(N1 \) and \(N2 \). Two methods are suggested:

(a) Use the "shift and add" method described in Chapter I. That is, if the low bit of the multiplier is a one, add the multiplicand into the running sum of partial products; then shift the multiplicand left one bit and the multiplier right one bit. Repeat these two steps until the multiplier is zero. This is a very slow method, but is helpful in doing problem 8.

(b) After packing both integers (if the integer multiply feature is not available), compute both the floating and DP products; then combine the low 12 bits of the floating product with the 48 bits of the DP product to form a full 60-bit product.

8. Write a function RBAIEX of two arguments:

\[
\text{RBAIEX}(R,I)
\]

where \(R \) is floating point and \(I \) integer, which returns the value of \(R^{*I} \) (RBAIEX stands for real base, integer exponent). The obvious method is to multiply \(R \) by itself \(I \) times; a more efficient algorithm, however, is analogous to suggestion (a) for the previous problem: Initialize the result to 1. If the low order bit of the exponent is a one, multiply the base into the result. Square the base and halve the exponent (shift right one). Repeat until the exponent is zero.

Remark: Check if the exponent is negative; if so, return \(1/R^{*IABS(I)} \).
EXERCISES

9. Write a subroutine similar to CDC (section 3.15) which produces an octal instead of a decimal integer, i.e., according to 020 instead of I20 format.

Remark: This routine is much simpler than CDC, since 020 format always produces 20 digits, no minus sign, and no "R". The algorithm required is in fact very similar to the character unpacking routine, except that here 20 3-bit fields must be unpacked, and each converted to a display code digit. (The divide and find remainder algorithm used in CDC would not work for numbers larger than 2**48, and hence cannot be used here).

10. Write a subroutine IDN (interpret decimal number) with two arguments:

 IDN(NUM,CHAR)

where CHAR is an array of 20 words, each containing one display code character, right justified, zero filled. If CHAR contains a valid decimal integer, including a possible plus or minus sign, IDN should return the value of the integer in NUM. Thus, IDN performs the inverse function from CDC, provided that the absolute value of the number is less than 2**48.

Remark: The value of NUM when CHAR does not contain a valid decimal integer is not specified. The routine should, however, check for such errors as more than one sign character or an invalid character and return some error indication. This error indication should be clearly stated in the comments for the routine.

Remarks: In the usual conversion algorithm, when a new digit is fetched, the value of the number encountered so far is multiplied by ten, and the value of the new digit is added in. If the multiplication is performed by the usual method, there is an inherent limit of 2**48; on the other hand, if the multiplication is effected by a combination of left shifts and additions, numbers up to 2**59 can be accepted.

Remark: The routine should in either case place some limit on the magnitude of numbers which will be accepted, and return an error indication if this limit is exceeded.
EXERCISES

11. Write a subroutine ION (interpret octal number) with two arguments:

ION(NUM,CHAR)

which is identical to IDN except that the series of digits in CHAR is to be interpreted as an octal integer. This routine is thus the inverse of the one specified in exercise 9.

Remark: Remark 1 from exercise 10 applies here, too. Since numbers of up to twenty digits must be accepted, the multiplication referred to in the second remark must here be performed by a left shift. Finally, since CHAR can contain at most twenty characters, the maximum allowable value, 2**60-1, cannot be exceeded.

12. Combine the routines IDN (exercise 10) and ION (exercise 11) into a subroutine IN with two arguments:

IN(NUM,CHAR)

as follows: if the series of digits in CHAR is followed by a "B" then interpret the digits as an octal number (as ION would), otherwise interpret the digits as a decimal number (as IDN would).

13. Write a function CHARCT of one argument:

CHARCT(NAME)

whose value is the number of non-zero characters in NAME (between 0 and 10). For example, CHARCT('1L') is 1, while CHARCT('1H') is 10.

14. Write a function DADD of two arguments:

DADD(N1,N2)

to perform decimal addition. The operands N1 and N2 are each single words containing ten decimal digits in display code (e.g., 10H0000012345); the value of the function should have a similar form.
EXERCISES

Remark: Such decimal arithmetic, while not available in FORTRAN, is a standard part of COBOL and PL/1.

Remark: A straightforward algorithm can be written to perform the addition serially, one digit at a time. However, it is possible by careful analysis to devise a routine which adds all ten digits simultaneously, and is consequently much faster.

15. Write a set of four macros, CLOAD, CADD, CSUB, and CSTORE which perform the same operations as LOAD, IADD, ISUB, STORE (Section 4.3), but on complex numbers.

Remark: A complex number is two floating point numbers stored in successive memory words. The first word contains the real part of the number, and the second word the imaginary part.

Remark: The ambitious reader may wish to incorporate these complex operations into the set of mixed-mode arithmetic macros. Conversions should then be performed according to the rules of FORTRAN.

16. Modify the FADD and FSUB macros (section 4.3) to test if the result is infinite, and, if so, call a (FORTRAN) subroutine to print an appropriate error message.

17. Write a function SUBARGS with no argument (invoked in FORTRAN by

\[
I = \text{SUBARGS (DUMMY)}
\]

where the argument is ignored), which returns the number of arguments with which the routine which calls SUBARGS was invoked. For example, if

\[
\text{SUBROUTINE ROSSINI (V, E, R, D, I)}
\]
\[
\text{INTEGER SUBARGS}
\]
\[
K=\text{SUBARGS (DUMMY)}
\]
\[
\ldots
\]
\[
\text{END}
\]
EXERCISES

is invoked with five arguments

CALL ROSSINI (S, E, V, I, L)

K will have the value 5, while if it is invoked with three arguments

CALL ROSSINI (B, A, R)

K will have the value 3.

Remark: Every FORTRAN Extended Subprogram begins with a "SAO AI" and saves the address of its parameter list in A0 throughout the subprogram (this is why a COMPASS routine called from FORTRAN should not change the value of A0). Therefore, when SUBARGS is called, A0 will point to the argument list of the calling procedure; SUBARGS must determine how long this list is.

18. Modify the INTEGER and REAL macros (p.150) to accept arguments of the form

INTEGER ARRAY [100]

and generate in this case

ARRAY BSS 100
ARRAY$ SET 0

The array "dimension" can be any valid address expression. The macros should continue to accept declarations of "simple variables", without any dimension, and generate a BSS 1.

Remark: Rather than repeat the code for analyzing the argument in INTEGER and REAL, place this code into a single macro which is invoked by both INTEGER and REAL.

Remark: Once this is done, it is a simple matter to modify the fancier INTEGER and REAL macros (p. 162) to accept a list of symbols with dimension declarations, such as

REAL (A[20],B[SIZE],C)
19. Using the code developed for exercise 18, modify the arithmetic macros to permit reference to subscripted variables:

\[
\begin{align*}
\text{LOAD} & \quad A[1] \\
\text{ADD} & \quad B[I] \\
\text{STORE} & \quad C[3]
\end{align*}
\]

The subscript must be either an integer or a variable name (symbol). If the subscript is an integer, it is added to the array address to yield the effective address; if the subscript is a variable, the contents of the variable are added to the array address to yield the effective address. For example

\[
\begin{align*}
\text{LOAD} \quad A[2] \\
\text{SA5} \quad A-1+2 \\
\text{BX6} \quad X5
\end{align*}
\]

while

\[
\begin{align*}
\text{LOAD} \quad A[I] \\
\text{SA4} \quad I \\
\text{SA5} \quad X4+A-1 \\
\text{BX6} \quad X5
\end{align*}
\]

Note that A-1 is used because, by FORTRAN convention, the address of A(1) is the address of A.

Remark: Symbols and integers are easily differentiated, since our symbols always begin with a letter, integers with a digit.

20. Write a three-way IF macro for the arithmetic macro package, with the form

\[
\text{IF3} \quad N, Z, P
\]

which branches to Z if the accumulator is zero, to N if it is negative, to P if it is positive. N, Z, and P may be arbitrary address expressions. When two of the address expressions are equal, the sequence of generated branches should be simplified if possible.
EXERCISES

21. Modify the LOAD and STORE macros (p. 130) so that if a STORE is immediately followed by a LOAD referencing the same location as the STORE, the LOAD will generate no code. For example,

 STORE A
 LOAD A

should generate simply

 SA6 A

22. Write a function ICOMPAR of two arguments

 ICOMPAR(M,N)

such that

 IF M=N, ICOMPAR(M,N)=0
 IF M>N, ICOMPAR(M,N)>0
 IF M<N, ICOMPAR(M,N)<0

where M and N are any integers.

Remark: If |M-N| ≤ 2**59-1, the routine IDIF presented in section 3.9 would be a satisfactory solution. If this is not the case, however, subtracting N from M will cause integer overflow, meaning simply that the difference is too large to represent as a 60-bit ones-complement integer. In that event the sign of the difference will not indicate which number is larger. This difficulty may be circumvented by first testing the signs of the arguments or by comparing first the high-order bits and then the low-order bits of the numbers. The latter is analogous to the technique presented in section 3.16 for comparing two 60-bit quantities treated as positive integers. Alternatively, if a CMU is available, the test may be performed by a suitable sequence of compare instructions.

23. Write a function B2Z of one argument

 B2Z(CHAR)

which returns the value of CHAR, a 10-character string, with each occurrence of a blank character (55 base8) replaced by 00.
This routine can be written in a straightforward manner, using a loop which iterates over the 10 characters. As in the case of CHARCT and DADD, however, (exercises 13 and 14) it is possible to code a faster routine which tests and replaces all 10 characters simultaneously.

24. Develop a set of macros for operating on character strings. In contrast to the arithmetic macros described in Chapter 4, these macros will take their operands from and return their result to memory. A minimal set would include three macros: one for allocating a variable, one for moving a string, one for comparing strings. The allocation macro will have two arguments, the name and length of the string:

\[\text{CVAR} \quad \text{ASTRING,20} \]

This would set aside a 2-word (20-character) block called ASTRING, and assign the symbol ASTRING$ the value 20. The latter operation will make it possible for the move and compare macros to determine the length of their arguments. The move macro will take two arguments, the source and target strings:

\[\text{MOVE} \quad \text{FROMSTG,TOSTG} \]

The problem arises of what to do if the strings are of different length. The simplest solution is to move the first \(n \) characters of FROMSTG to the first \(n \) characters of TOSTG, where \(n \) is the minimum of the lengths of the two strings. Optionally, one could fill any remaining characters in TOSTG with blanks. The compare macro takes as arguments two strings and a label:

\[\text{IFEQ} \quad \text{ASTRING,BSTRING,INDEED} \]

and branches to the label INDEED if the strings are equal. Again a question arises if the lengths of the strings differ. One can say that the strings are equal if the first \(n \) characters are identical, where \(n \) is the length of the shorter string, or one may also require that the remaining characters of the longer string all be blanks.

25. Write a function of three arguments

\[\text{SUBSTR(STRING,FIRST,COUNT)} \]
where STRING is a character string (array), and FIRST and COUNT are integer variables, FIRST ≥ 1, 1 ≤ COUNT ≤ 10. SUBSTR returns COUNT characters of STRING, beginning with character number FIRST. If COUNT < 10, the substring that is returned in X6 should be left justified and padded on the right with blanks.

Remark: Whereas exercise 24 was intended to indicate the ease with which CMU instructions can handle fixed-length strings beginning at fixed locations, this exercise points up the difficulties when variable-length strings at variable locations are involved. The character count FIRST must be reduced to an offset, in words, from the address of STRING plus a character position. The address, character position, and length must then be shifted into place and incorporated into a move descriptor. Would it be just as easy without the CMU instructions? Try it and compare.
SOLUTIONS TO SELECTED EXERCISES

1. Straightforward solution:

IDENT INDEX

FUNCTION INDEX(ITEM, LIST, LENGTH)

SEARCHES THE ARRAY LIST, OF LENGTH WORDS,
FOR ITEM. RETURNS ARRAY INDEX OF FIRST
OCCURRENCE OF ITEM IF FOUND, ELSE 0.

**
* *
* *
**

ENTR INDEX
INDEX BSS 1
SA4 A1+1 X4=STARTING ADDRESS OF LIST
SA3 A1+2 X3=ADDRESS OF LENGTH
SA1 X1 X1=ITEM SOUGHT
SA3 X3
SB3 X3 B3=LENGTH OF LIST
SB4 0 B4=COUNT=0
LUP SA2 X4+B4 FETCH NEXT LIST ELEMENT
IX5 X1-X2
ZR X5,HIT JUMP IF IT MATCHES ITEM SOUGHT
SB4 B4+1 INCREDMENT COUNT
LT B4,B3,LUP LOOP IF NOT AT END OF LIST
SX6 B0
EQ INDEX RETURN 0 - ITEM NOT FOUND
HIT SX6 B4+1
EQ INDEX RETURNS ARRAY INDEX
END

Notes:

(a) This routine will successfully match an item of -0 with a
list element of +0 (or vice versa); -0-(+0)=-0 and +0-(-0)=+0,
and the ZR test will branch on either +0 or -0. To accept only
LIST elements which match ITEM bit-for-bit, we must take the
logical instead of the integer difference

BX5 X1-X2

and branch out of the loop only on X5 = +0. The latter may be
accomplished by

NG X5,NEG
ZR X5,HIT
NEG SB4 B4+1
SOLUTIONS TO SELECTED EXERCISES

or by

CX5 X5
ZR X5,HIT

The count instruction is slightly faster than the branch on the 6600 but much slower on the 5400 and 6500.

(b) We must add one to B4 at HIT because the LIST element at address LIST+i has array index i+1.

A more devious solution:

<table>
<thead>
<tr>
<th>IDENT</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>INDEX</td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSS</td>
</tr>
<tr>
<td></td>
<td>SA2</td>
</tr>
<tr>
<td></td>
<td>SA3</td>
</tr>
<tr>
<td></td>
<td>SA1</td>
</tr>
<tr>
<td></td>
<td>SB2</td>
</tr>
<tr>
<td></td>
<td>SA3</td>
</tr>
<tr>
<td></td>
<td>SA4</td>
</tr>
<tr>
<td></td>
<td>BX6</td>
</tr>
<tr>
<td></td>
<td>SA6</td>
</tr>
<tr>
<td></td>
<td>SA2</td>
</tr>
<tr>
<td></td>
<td>SB7</td>
</tr>
<tr>
<td></td>
<td>LUP</td>
</tr>
<tr>
<td></td>
<td>SA2</td>
</tr>
<tr>
<td></td>
<td>NZ</td>
</tr>
<tr>
<td></td>
<td>BX7</td>
</tr>
<tr>
<td></td>
<td>SX6</td>
</tr>
<tr>
<td></td>
<td>SA7</td>
</tr>
<tr>
<td></td>
<td>IX0</td>
</tr>
<tr>
<td></td>
<td>PL</td>
</tr>
<tr>
<td></td>
<td>SX6</td>
</tr>
<tr>
<td></td>
<td>EQ</td>
</tr>
</tbody>
</table>

Notes:

(a) This routine puts the item sought after the end of the list so that it will always be found by the search loop, even if the item does not appear in the list. Consequently, the loop need not check each time if it has reached the end of the list. However, when a match is found, the routine must determine whether an element of the list or the item put after the end of the list was found.

(b) The warning in note (a) for the first solution also applies here.
(c) The SA2 is put after the IX5 in the loop so that the time required to fetch the next element will overlap the branch execution (on the 6600).

(d) The constant 1 is preloaded into B7 so that the search loop can fit into one word.

8. Simple algorithm:

```plaintext
IDENT RBAIEX
******************************************************************************
* RBAIEX(R,I) WHERE R IS FLOATING, I IS INTEGER. RETURNS R**I
* *
******************************************************************************
ENTRY RBAIEX
RBAIEX    BSS    1
            SA2    A1+1     X2=ADDRESS OF EXPONENT
            SA1    X1       X1=BASE
            SA2    X2       X2=EXPONENT
            SA4    =1.
            BX6    X4       X6=1.
            ZR     X2,RBAIEX IF EXPONENT=0,RETURN 1
            BX3    X2
            AX3    60
            BX3    X2-X3     X3=ABSOLUTE VALUE OF EXPONENT
            SX0    1
LUP        FX6    X6*X1     X6=X6*BASE
            1X3    X3-X0     EXPONENT=EXPONENT-1
            NZ     X3,LUP    IF EXPONENT ≠ 0, LOOP
            PL     X2,RBAIEX IF EXPONENT POSITIVE, RETURN
            FX6    X4/X6     IF EXPONENT NEGATIVE, COMPUTE
            EQ     RBAIEX    RECIPROCAL AND RETURN
END
```
SOLUTIONS TO SELECTED EXERCISES

8. Fast algorithm:

```
IDENT       RBAIEX
ENTRY       RBAIEX
RBAIEX
BSS         1
SA2         A1+1   X2=ADDRESS OF EXPONENT
SA1         X1      X1=BASE
SA2         X2      X2=EXPONENT
SA4         =1.
BX6         X4      X6=1.
ZR          X2,RBAIEX IF EXPONENT=0,RETURN 1
BX3         X2
AX3         60
BX3         X2-X3   X3=ABSOLUTE VALUE OF EXPONENT
MX5         59
LUP
BX7         =X5*X3   X7=LOW ORDER BIT OF EXPONENT
ZR          X7,BITOFF
FX6         X6*X1   IF BIT=1,_MULTIPLY BASE INTO X6
BITOFF
AX3         1       HALVE EXPONENT
FX1         X1*X1   SQUARE BASE
NZ          X3,LUP   IF 1 BITS REMAIN IN EXPO, LOOP
PL          X2,RBAIEX IF EXPONENT POSITIVE, RETURN
FX6         X4/X6   IF EXPONENT NEGATIVE, COMPUTE
EQ          RBAIEX   RECIPROCAL AND RETURN
END
```

Notes:

(a) The fast algorithm is based on the following analysis. If we write the exponent as a binary number with bits

\[b(n) \ldots b(0) \]

\[I = b(n)*2**n + b(n-1)*2**(n-1) + \ldots + b(1)*2**1 + b(0)*2**0 \]

then

\[R**I = R**(b(n)*2**n + b(n-1)*2**(n-1) + \ldots + b(1)*2**1 + b(0)*2**0) \]

\[= R**(b(n)*2**n)*R**(b(n-1)*2**(n-1))*\ldots*R**(b(1)*2**1)*R**(b(0)*1) \]

since each \(b(k) = 0 \) or 1, this means that the factor \(R**(2**k) \) is to be included in the result only if \(b(k)=1 \). The loop in the routine generates successively \(R**(2**k) \), \(k = 0, 1, 2, \ldots \) and multiplies it into \(X6 \) if the corresponding bit in \(I \), \(b(k)=1 \).

(b) The second version requires about \(\log(\text{base 2}) I \) iterations of the loop, and thus is much faster than the first version, which requires \(I \) iterations.

200
13. Straightforward solution:

IDENT CHARCT

* * CHARCT(WORD) RETURNS NUMBER OF *
* NON-ZERO CHARACTERS IN WORD *
* *

ENTRY CHARCT
CHARCT BSS 1
SA2 X1 X1=WORD
SB7 10
SX6 0 X6=CHARACTER COUNT=0
MX5 6 FORM ONE CHARACTER MASK
LUP BX0 X5*X1 MASK OUT HIGH-ORDER CHARACTER
ZR X0,NOCHAR IF NON-ZERO,
SX6 X6+1 INCREMENT CHARACTER COUNT
NOCHAR LX1 6 SHIFT WORD LEFT ONE CHARACTER
SB7 B7-1
NZ B7,LUP IF 10 CHAR NOT EXAMINED, LOOP
EQ CHARCT
END

Faster method:

IDENT CHARCT
ENTRY CHARCT
CHARCT BSS 1
SA1 X1 X1=WORD
SA2 =4040404040404040B
BX6 X1
DUP 5 OR ALL SIX BITS OF A CHARACTER
LX1 1 INTO THE HIGH-ORDER
BX6 X6+X1 BIT OF THE CHARACTER
ENDD
BX6 X6*X2 MASK OUT HIGH-ORDER BITS OF CHAR
CX6 X6 RETURN NUMBER OF 1 BITS
EQ CHARCT
END

Note: Fast character manipulation routines, such as the above, are often obtained by processing a number of characters simultaneously. The sequence of five shift and logical sum operations (within the DUP) leaves in the high-order bit of each character in X6 the logical sum of all six bits of the character
SOLUTIONS TO SELECTED EXERCISES

in the argument. After the logical product only the high-order bit of each character is left; it will be non-zero if any bit in the original character was non-zero. Thus, the number of one bits in X6 before the count ones instruction is executed equal the number of non-zero characters in WORD.

14.

IDENT DADD

* *
* DADD(ADDEND1,ADDEND2) RETURNS THE SUM, *
* OF THE TWO DISPLAY-CODE DECIMAL ARGUMENTS *
* *

ENTRY DADD
DADD
BSS 1
SA2 A1+1
SA1 X1 X1,X2=TW0 ARGUMENTS TO BE SUMMED
SA2 X2
IX3 X1+X2 FORM INTEGER SUM
SA4 =606060606060606060606060606060B
SA5 =33333333333333333333333333B
BX6 X3*X4 FOR EACH CHAR IN X3>=66B
BX7 X6 (NO CARRY OUT OF CHAR POSN)
LX7 57 SET CORR CHAR IN X6=66B,
BX6 X6+X7 OTHER CHARS IN X6=0
IX6 X3-X6 SUBTRACT 66B FROM ALL CHARs >=66B
IX6 X6+X5 ADD 33B TO ALL CHARS
EQ DADD RETURN
END

Note: In discussing binary-coded-decimal addition (p. 14), we mentioned that the addition algorithm must check for digits greater than ten in the sum, and propagate a carry to the next digit. Storing the decimal numbers in display code neatly solves the problems of propagating carries; if the sum of two digits is greater than 9, the sum of their display codes will be greater than 77B, and a carry will be propagated into the next character by the IX3 X1+X2. For example,

display code

<table>
<thead>
<tr>
<th>17</th>
<th>+25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>34</th>
<th>42</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>34</th>
<th>42</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>35</th>
<th>40</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>37</th>
<th>35</th>
</tr>
</thead>
</table>

integer sum
final result
If no carry occurred out of a given character position, the
caracter will be between 66B (sum of two display code zeros) and
77B; we must subtract 33B to get the proper display code
character for the result. If a carry out did occur, the
character will be between 00 and 11B; 33B must be added to obtain
the proper display code character. This routine "corrects" all
characters simultaneously through some devious bit manipulation.
First, 66B is subtracted from all characters \(\geq 66B \); second, 33B
is added to all characters.

17.

IDENT SUBARGS

**
* *
* SUBARGS TAKES NO ARGUMENTS: IT RETURNS *
* *
* THE NUMBER OF ARGUMENTS PASSED TO THE *
* *
* ROUTINE WHICH INVOKED SUBARGS *
* *
**

ENTRY SUBARGS

SUBARGS BSS 1
 SA2 A0 X2=FIRST WORD OF ARGUMENT LIST
 TO ROUTINE THAT CALLED SUBARGS
 SX6 0 X6=ARGUMENT COUNT =0
 ZR X2, SUBARGS IF NO ARGUMENTS, RETURN
 NEXTARG SA2 A2+1 FETCH NEXT WORD OF ARGUMENT LIST
 INCREMENT ARGUMENT COUNT
 SX6 X6+1
 NZ X2, NEXTARG IF NOT AT END OF ARGUMENTS, LOOP
 EQ SUBARGS RETURN
 EQD SUBARGS
 ENDM

20.

IF3 MACRO N,Z,P
ZR X6,Z
IFC NE,NSP PL X6,P
ENIF
EQ N
ENDM

203
SOLUTIONS TO SELECTED EXERCISES

Note: The IF C NE, N P will succeed unless N and P are literally identical character for character. The reader might be inclined to use instead

IFNE N, P

which would succeed unless the values of N and P are equal. However, the latter IF would be an error unless both N and P were previously defined. Since this would not always be the case, the test on the values of N and P cannot be used.
VECLIB
STORAGE ALLOCATION.

AI

COMPASS 3.6-518. 8/12/83. 21.42.52. PAGE 1

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>LENGTH</th>
<th>BINARY CONTROL CARDS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>IDENT VECLIB</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>END</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLOCKS</th>
<th>TYPE</th>
<th>ADDRESS</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM</td>
<td>LOCAL</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>VECTOR</td>
<td>COMMON</td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

ENTRY POINTS.

INIT 0+ PSUM 6+
IDENT VECLIB

VECLIB IS A LIBRARY OF ROUTINES WHICH PERFORM OPERATIONS ON A VECTOR IN THE COMMON BLOCK VECTOR

ENTRY INIT
ENTRY PSM

USE /VECTOR/

24 VEC

24 SIZE

USE 0

BSS 20

BSS 1

THE VECTOR, MAXIMUM SIZE OF 20 ELEMENTS

ACTUAL SIZE OF THE VECTOR

INITIALIZES THE ELEMENTS OF THE VECTOR TO THE VALUE OF

THE PARAMETER PASSED TO IT. CALLING SEQUENCE AS FOLLOWS:

CALL INIT(INTEGER)

1 51110

2 0144 5110000000 C

3 6120000001

4 0621000000 +

5 6122000001 +

INIT

X1=VALUE USED FOR INITIALIZATION

X6=VALUE USED FOR INITIALIZATION

GET ACTUAL SIZE OF THE VECTOR

B1=SIZE OF THE VECTOR

SET THE FIRST ELEMENT

B2=1

B2=COUNTER

B2,B1,INIT CHECK IF WE ARE DONE

A6+1 IF NOT, SET NEXT ELEMENT

B2+B+1 INCREMENT COUNTER

GO FOR MORE

PSUM COMPUTES THE PARTIAL SUM OF A VECTOR, VEC(I) IS EQUAL

TO THE SUM OF THE ELEMENTS FROM 1 TO I. CALLING SEQUENCE:

CALL PSUM

1 5110000000 C

10 5120000000 63128

11 6120000001

12 0621000006 +

13 36616

PSUM

VEC

X1=FIRST ELEMENT

X6=FIRST ELEMENT

GET ACTUAL SIZE OF THE VECTOR

B1=SIZE OF THE VECTOR

B2=1

B2=COUNTER

B2,B1,PSUM ARE WE ALL DONE

A1+1 GET NEXT ELEMENT

X6 X1+X6 COMPUTE NEW PARTIAL SUM

(OLD PARTIAL SUM PLUS NEW ELEMENT)

A1 STORE THE PARTIAL SUM

B2+B+1 INCREMENT COUNTER

GO FOR IT

END

43300B CM STORAGE USED 49 STATEMENTS 6 SYMBOLS

MODEL 73 ASSEMBLY 0.333 SECONDS 16 REFERENCES

2 ERRORS IN VECLIB
ERROR DIRECTORY.

D TYPE ERROR
OCCURRED ON PAGES
2

DOUBLE DEFINED SYMBOL. THE FIRST DEFINITION HOLDS

U TYPE ERROR
OCCURRED ON PAGES
2

UNDEFINED SYMBOL. VALUE ASSUMED 0.
PROGRAM MAIN

COMMON /VECTOR/ VEC(20), SIZE
INTEGER VEC, SIZE
SIZE = 10

CALL INIT(1)
CALL PSUM
STOP
END

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS
2862 MAIN

VARIABLES
SN TYPE RELLOCATION
24 SIZE INTEGER VECTOR 0 VEC INTEGER ARRAY VECTOR

FILE NAMES
0 OUTPUT

EXTERNALS TYPE ARGS
INIT 1 PSUM 0

COMMON BLOCKS LENGTH
VECTOR 21

STATISTICS
PROGRAM LENGTH 71B 57
BUFFER LENGTH 2901B 1827
CM LABELED COMMON LENGTH 25B 21
52000B CM USED
VECLIB STORAGE ALLOCATION.

** At ** COMPASS 3.6-518. 86/12/03. 21.41.82. PAGE 1

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>END</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLOCKS</th>
<th>TYPE</th>
<th>ADDRESS</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM*</td>
<td>LOCAL</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>VECTOR</td>
<td>COMMON</td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

ENTRY POINTS.

| INIT | 0+ | FSCM | 6 |
VECLIB

* VECLIB IS A LIBRARY OF Routines WHICH PERFORM OPERATIONS ON A VECTOR IN THE COMMON BLOCK VECTOR

ENTRY INIT
ENTRY PSUM

USE /VECTOR/
USE 0

0 24 VEC BSS 20 THE VECTOR, MAXIMUM SIZE OF 20 ELEMENTS
24 1 SIZE BSS 1 ACTUAL SIZE OF THE VECTOR

* INIT Initializes THE ELEMENTS OF THE VECTOR TO THE VALUE OF THE PARAMETER PASSED TO IT. CALLING SEQUENCE AS FOLLOWS:
* CALL INIT(INTEGER)

0 1 INIT
1 53110
2 63120
3 612000001
4 5621000000 + LOOP
5 612200001
6 51000000 C
7 51000000 C
8 512000024 C
9 63120
10 612000001
11 5621000000 + LOOP1
12 612200001
13 5610
14 5610
15 040000012 +

* PSUM Computes THE PARTIAL SUM OF A VECTOR, VE<(I)> IS EQUAL TO THE SUM OF THE ELEMENTS FROM 1 TO I. CALLING SEQUENCE:
* CALL PSUM

43300H CM STORAGE USED
MODEL 73 ASSEMBLY
49 STATEMENTS
6 SYMBOLS
8.320 SECONDS
16 REFERENCES
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
<th>Type</th>
<th>Line</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>0</td>
<td>PROGRAM*</td>
<td>2/06 E</td>
<td>2/26</td>
</tr>
<tr>
<td>LOOP</td>
<td>4</td>
<td>PROGRAM*</td>
<td>2/26 L</td>
<td>2/29</td>
</tr>
<tr>
<td>LOOP1</td>
<td>11</td>
<td>PROGRAM*</td>
<td>2/42 L</td>
<td>2/48</td>
</tr>
<tr>
<td>PSUM</td>
<td>6</td>
<td>PROGRAM*</td>
<td>2/07 E</td>
<td>2/36 L</td>
</tr>
<tr>
<td>SISE</td>
<td>24</td>
<td>VECTOR</td>
<td>2/11 L</td>
<td>2/22</td>
</tr>
<tr>
<td>VEC</td>
<td>0</td>
<td>VECTOR</td>
<td>2/10 L</td>
<td>2/24 S</td>
</tr>
<tr>
<td>BLOCK</td>
<td>ADDRESS</td>
<td>LENGTH</td>
<td>FILE</td>
<td>DATE</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>/VECTOR/</td>
<td></td>
<td>111</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MAIN</td>
<td>136</td>
<td>2874</td>
<td>LGO</td>
<td>08/12/83 FPN</td>
</tr>
<tr>
<td>VCLIB</td>
<td>2232</td>
<td>15</td>
<td>LGO</td>
<td>08/12/83 COMPASS</td>
</tr>
<tr>
<td>/DUP.END/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/FCL.C./</td>
<td>2250</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/Q.S.10/</td>
<td>2276</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QNTRY</td>
<td>2443</td>
<td>1</td>
<td>SL-FORTRAN</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>/FCL-ENT/</td>
<td></td>
<td>2444</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>FCL-FDL</td>
<td>2585</td>
<td>48</td>
<td>SL-FORTRAN</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>FEISP</td>
<td>2545</td>
<td>3</td>
<td>SL-FORTRAN</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>FORSYS</td>
<td>2556</td>
<td>516</td>
<td>SL-FORTRAN</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>FORUTL</td>
<td>3266</td>
<td>25</td>
<td>SL-FORTRAN</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>GETFIT</td>
<td>3313</td>
<td>74</td>
<td>SL-FORTRAN</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>STGAD</td>
<td>3487</td>
<td>1</td>
<td>SL-FORTRAN</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>CPU.CFM</td>
<td>3410</td>
<td>5</td>
<td>SL-SYSLIB</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>CPU.EYS</td>
<td>3415</td>
<td>48</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>CMP.APF</td>
<td>3455</td>
<td>162</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>CMP.CSF</td>
<td>3637</td>
<td>6</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>CMP.FFA</td>
<td>3645</td>
<td>14</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>CMP.FRF</td>
<td>3661</td>
<td>36</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>CMP.GPS</td>
<td>3717</td>
<td>22</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>CMP.KIL</td>
<td>3741</td>
<td>12</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>CMP.R</td>
<td>3753</td>
<td>7</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>CTLERM</td>
<td>3762</td>
<td>206</td>
<td>SL-SYSLIB</td>
<td>08/10/13 COMPASS</td>
</tr>
<tr>
<td>ERGSM</td>
<td>4212</td>
<td>435</td>
<td>SL-SYSLIB</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>LINSTRM</td>
<td>4674</td>
<td>67</td>
<td>SL-SYSLIB</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>RSYS</td>
<td>4763</td>
<td>5</td>
<td>SL-SYSLIB</td>
<td>08/10/14 COMPASS</td>
</tr>
<tr>
<td>/FCL.COM/</td>
<td></td>
<td>4770</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>FDL.RES</td>
<td>5884</td>
<td>211</td>
<td>SL-SYSLIB</td>
<td>08/10/81 COMPASS</td>
</tr>
<tr>
<td>FDL.RMI</td>
<td>5215</td>
<td>222</td>
<td>SL-SYSLIB</td>
<td>08/10/81 COMPASS</td>
</tr>
</tbody>
</table>

.390 CP SECONDS 21600B CM STORAGE USED 2 TABLE MOVES
PROGRAM MAIN 73/74 OPT=1 ** All ** FTN 4.8+518 88/12/17. 22.17.06 PAGE 1

1 PROGRAM MAIN(INPUT,OUTPUT)
 INTEGER SENT(160),WORDS
 READ 5,(SENT(I),I=1,160)
 READ 5,(SENT(I),I=81,160)

5 NUMBER = WORDS(SENT,160)
 PRINT 6,NUMBER
 STOP
5 FORMAT(80A1)
6 FORMAT(* THE NUMBER OF WORDS IS *,15)
18 END

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS
4137 MAIN

VARIABLES SN TYPE RELOCATION 4284 NUMBER INTEGER
4285 SENT INTEGER ARRAY

FILE NAMES MODE 2054 OUTPUT FMT
0 INPUT FMT

EXTERNALS TYPE ARGS
WORDS INTEGER 2

STATEMENT LABELS
4172 5 FMT
4174 6 FMT

STATISTICS
PROGRAM LENGTH 437B 287
BUFFER LENGTH 40000 287

520000 CM USED
<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>LENGTH</th>
<th>BINARY CONTROL CARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>IDENT WORDS</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>END</td>
</tr>
</tbody>
</table>

ENTRY POINTS.

WORDS

WORD

IDENT WORDS

* WORDS IS A FUNCTION WHICH COUNTS THE NUMBER OF WORDS IN
* A SENTENCE OR PHRASE. A WORD IS A SEQUENCE OF CHARACTERS
* SEPARATED BY ONE OR MORE BLANKS. THE SENTENCE IS AN ARRAY
* OF CHARACTERS, ONE CHARACTER PER WORD, LEFT JUSTIFIED,
* BLANK Filled.
* CALLING SEQUENCE:
* NUMBER = WORDS(SENTENCE,LENGTH)

ENTRY WORDS

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>502100001</td>
</tr>
<tr>
<td>2</td>
<td>63120</td>
</tr>
<tr>
<td>3</td>
<td>76600</td>
</tr>
<tr>
<td>4</td>
<td>030100005</td>
</tr>
<tr>
<td>5</td>
<td>54112</td>
</tr>
<tr>
<td>6</td>
<td>041000011</td>
</tr>
<tr>
<td>7</td>
<td>66100</td>
</tr>
<tr>
<td>8</td>
<td>040000011</td>
</tr>
<tr>
<td>9</td>
<td>611000001</td>
</tr>
<tr>
<td>10</td>
<td>612200001</td>
</tr>
<tr>
<td>11</td>
<td>072300005</td>
</tr>
<tr>
<td>12</td>
<td>041000000</td>
</tr>
<tr>
<td>13</td>
<td>040000000</td>
</tr>
<tr>
<td>14</td>
<td>55555555555555555</td>
</tr>
</tbody>
</table>

38 STATEMENTS 5 SYMBOLS
MODEL 73 ASSEMBLY 0.245 SECONDS 14 REFERENCES
<table>
<thead>
<tr>
<th>WORDS</th>
<th>A14</th>
<th>SYMBOLIC REFERENCE TABLE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLANK</td>
<td>14</td>
<td>PROGRAM* 2/28 2/37 L 2/33</td>
</tr>
<tr>
<td>LOOP</td>
<td>5</td>
<td>PROGRAM* 2/22 2/24 L 2/33</td>
</tr>
<tr>
<td>NEXT</td>
<td>11</td>
<td>PROGRAM* 2/27 2/30 L 2/32 L</td>
</tr>
<tr>
<td>OVER</td>
<td>10</td>
<td>PROGRAM* 2/26 2/31 L 2/32 L</td>
</tr>
<tr>
<td>WORDS</td>
<td>0</td>
<td>PROGRAM* 2/11 L 2/12 L 2/14 2/36</td>
</tr>
</tbody>
</table>
LOAD MAP - MAIN

**415 ** CYBER LOADER 1.5-518 88/12/17. 22.17.86. PAGE 1

FWA OF THE LOAD 111
LMA+1 OF THE LOAD 13107

TRANSFER ADDRESS -- MAIN 4258

PROGRAM ENTRY POINTS -- MAIN 4258

PROGRAM AND BLOCK ASSIGNMENTS.

<table>
<thead>
<tr>
<th>BLOCK</th>
<th>ADDRESS</th>
<th>LENGTH</th>
<th>FILE</th>
<th>DATE</th>
<th>PROCESS VER LEVEL</th>
<th>HARDWARE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>111</td>
<td>4445</td>
<td>LGO</td>
<td>88/12/17</td>
<td>PTN 4.8 518</td>
<td>666X I</td>
<td>PROGRAM OPT-1</td>
</tr>
<tr>
<td>WORDS</td>
<td>4556</td>
<td>15</td>
<td>LGO</td>
<td>88/12/17</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/STEP-END/</td>
<td>4573</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/FLC.COM/</td>
<td>4574</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/QS.10/</td>
<td>4622</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUNITY</td>
<td>4767</td>
<td>1</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/FCLI-END/</td>
<td>4778</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMID=</td>
<td>5831</td>
<td>33</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCMSSX=</td>
<td>5124</td>
<td>41</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLFIST=</td>
<td>5165</td>
<td>3</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLST=</td>
<td>5170</td>
<td>156</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOUT=</td>
<td>5465</td>
<td>311</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMTAP=</td>
<td>5657</td>
<td>357</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORTXM=</td>
<td>6226</td>
<td>516</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORUT=</td>
<td>6754</td>
<td>25</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GETTIT=</td>
<td>7061</td>
<td>74</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCOR=</td>
<td>7075</td>
<td>145</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFPT=</td>
<td>7242</td>
<td>257</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KODE=</td>
<td>7451</td>
<td>465</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAER=</td>
<td>18136</td>
<td>375</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTC=</td>
<td>18553</td>
<td>158</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTCOM=</td>
<td>18739</td>
<td>154</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SASSAI=</td>
<td>11057</td>
<td>1</td>
<td>SL-FORTAN</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGP.COM</td>
<td>11068</td>
<td>5</td>
<td>SL-SYSLIB</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGP.COM</td>
<td>11269</td>
<td>48</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.ALF</td>
<td>11210</td>
<td>162</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.CDF</td>
<td>11387</td>
<td>8</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.PPA</td>
<td>11315</td>
<td>14</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.PRF</td>
<td>11332</td>
<td>36</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.GSR</td>
<td>11437</td>
<td>22</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.KIL</td>
<td>11411</td>
<td>12</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.EMM</td>
<td>11423</td>
<td>7</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.J</td>
<td>11432</td>
<td>286</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF.ELF</td>
<td>11640</td>
<td>22</td>
<td>SL-SYSLIB</td>
<td>88/10/13</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTL.SRM</td>
<td>11662</td>
<td>435</td>
<td>SL-SYSLIB</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERXXEM</td>
<td>12317</td>
<td>25</td>
<td>SL-SYSLIB</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LISTERRM</td>
<td>12344</td>
<td>67</td>
<td>SL-SYSLIB</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMSYS=</td>
<td>12433</td>
<td>5</td>
<td>SL-SYSLIB</td>
<td>88/10/14</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/FDM.COM</td>
<td>12440</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDL.EDS</td>
<td>12454</td>
<td>211</td>
<td>SL-SYSLIB</td>
<td>88/10/01</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDL.WM</td>
<td>12665</td>
<td>222</td>
<td>SL-SYSLIB</td>
<td>88/10/01</td>
<td>COMPASS 3.6 518</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FCL INITIALIZATION ROUTINE.

COMMON CODED I/O ROUTINES AND CONSTANTS.

INITIALIZE CONSTANTS.

CONVERTED DATA STORAGE.

COMMON FLOATING INPUT CONVERTER.

COMMON FLOATING OUTPUT CODE.

CRACK APLIST AND FORMAT FOR KODER/KRAKER.

FORTran OBJECT LIBRARY UTILITIES.

FCL MISC. UTILITIES.

LOCATE A FIT GIVEN A FILE DESCRIPTOR.

COMMON INPUT FORMATTING CODE.

FORMATTED READ FORTRAN RECORD.

OUTPUT FORMAT INTERPRETER.

PROCESS FORMATTED FORTRAN INPUT.

FORMATTED WRITE FORTRAN RECORD.

COMMON OUTPUT CODE.

LINK BETWEEN SYS-AID AND INITIALIZATION CODE.

CONTROL POINT MANAGER.

PROCESS SYSTEM REQUEST.

CMM V1.1 - ALLOCATE FIXED.

CMM V1.1 - CHANGE SPEC FIXED.

CMM V1.1 - FIXED FREE ALGORITHM.

CMM V1.1 - FREE FIXED.

CMM V1.1 - GET SUMMARY STATISTICS.

CMM V1.1 - DEACTIVATE CMM.

CMM V1.1 - RESIDENT SUBROUTINES.

CMM V1.1 - SHRINE AT LWA FIXED.

CMM CONTROLLING ROUTINE.

CMM ERROR PROCESSOR ENTRY.

CMM - ALLOCATE SPACE FOR LIST OF FILES.

CMM - POST AA+I REQUEST.

FAST DYNAMIC LOADER RESIDENT.

FCL MEMORY MANAGER INTERFACE.
ANUA850, 08/10/17, NYU ACADEMIC COMPUTING FACILITY

13.19.07. KPM, 31407, USER0, 350, 0.056KCS.
13.19.07. USER0, MCALR, 0.041KCS.
13.19.08. CHMS, 1212315, BUCK.
13.19.08. FDN.
13.19.11. 037 CP SECONDS COMPILATION TIME
13.19.11. 1AP, PART.
13.19.14. CM OUT OF RANGE.
13.19.14. ILLEGAL INSTRUCTION.
13.19.14. JDEP, 0.001KUN.
13.19.14. JEPF, 0.013KUN.
13.19.14. JFMS, 2.005KUN.
13.19.14. JECF, 1.3945SEC.
13.19.14. AESR, 2.142KUN.
13.25.16. UCLF, 1851, 0.145KUN.

** A17 **

NFS 1.4-518-NYU-21
IDENT WORDS

WORDS IS A FUNCTION WHICH COUNTS THE NUMBER OF WORDS IN
A SENTENCE OR PHRASE. A WORD IS A SEQUENCE OF CHARACTERS
SEPARATED BY ONE OR MORE BLANKS. THE SENTENCE IS AN ARRAY
OF CHARACTERS, ONE CHARACTER PER WORD, LEFT JUSTIFIED.
BLANK FILLED.
CALLING SEQUENCE:
NUMBER = WORDS(SENTENCE,LENGTH)

ENTRY WORDS
EXT REGCMP
BSS 1
SA2 A1+1 X2=ADDRESS OF LENGTH
SA1 X1 A1=STARTING ADDRESS OF SENTENCE
SA2 X2 X2=LENGTH OF SENTENCE
SB3 X2 B3=LENGTH OF SENTENCE
SB1 B0 B1=FLAG, 0=BLANKS 1=NONBLANKS
SB2 1 B2=CHARACTER COUNTER
SX6 B0 X6=WORD COUNTER
SA5 BLANK X5=LEFT JUSTIFIED BLANK
BX1 X1-X5 IS THE FIRST CHARACTER A BLANK
ZA X1,LOOP IF SO, JUMP
SB1 1 IF NOT, FLAG=NONBLANK
RJ REGCMP
SA1 A1+2 GET NEXT CHARACTER
RJ REGCMP
BX1 X1-X5 IS THE CHARACTER A BLANK
NZ X1,OVER IF NOT, JUMP
EQ B1,NEXT IS IT THE FIRST BLANK BETWEEN WORDS
SX6 X6+1 IF SO, INCREMENT WORD COUNT
SB1 B0 SET FLAG TO INDICATE BLANK ENCOUNTERED
EQ NEXT
OVER
SB1 1 SET FLAG TO INDICATE NONBLANK
SB2 B2+1 INCREMENT CHARACTER COUNTER
LT B2,B1,LOOP DID WE EXAMINE ALL CHARACTERS? IF NOT, LOOP
EQ B1,WORDS WAS THE LAST CHARACTER A BLANK? YES, RETURN
SX6 X6+1 SENTENCE ENDED WITH A WORD, INCREMENT COUNT
EQ WORDS RETURN
Blank DATA 1H DEFINE A LEFT JUSTIFIED BLANK
END

433008 CM STORAGE USED 41 STATEMENTS
MODEL 7J ASSEMBLY 8.267 SECONDS
6 SYMBOLS 17 REFERENCES
LOAD MAP - MAIN

** AI9 ** CYBER LOADER 1.5-518 80/12/17. 20.59.50. PAGE 2

<table>
<thead>
<tr>
<th>BLOCK</th>
<th>ADDRESS</th>
<th>LENGTH</th>
<th>FILE</th>
<th>DATE</th>
<th>PROCESS</th>
<th>VER</th>
<th>LEVEL</th>
<th>HARDWARE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDL.RES</td>
<td>13821</td>
<td>211</td>
<td>SL-SYSLIB</td>
<td>80/10/01</td>
<td>COMPASS</td>
<td>3.6</td>
<td>518</td>
<td>FAST DYNAMIC LOADER RESIDENT.</td>
<td></td>
</tr>
<tr>
<td>FDL.MM1</td>
<td>13225</td>
<td>222</td>
<td>SL-SYSLIB</td>
<td>80/10/01</td>
<td>COMPASS</td>
<td>3.6</td>
<td>518</td>
<td>FDL MEMORY MANAGER INTERFACE.</td>
<td></td>
</tr>
</tbody>
</table>

.679 CP SECONDS 304000 CM STORAGE USED 6 TABLE MOVES

THIS IS REGISTER DUMP NUMBER 1 CALLED FROM LOCATION 004564

X0 777777777777777777A0 A0 000000 B0 000000
X1 55555555555555555555 A1 00317 B1 000000
X2 000000000000000240 A2 00312 B2 000000
X3 00000000007750000000 A3 007576 B3 000240
X4 00000000000005165 A4 00310 B4 000012
X5 55555555555555555555 A5 004574 B5 000052
X6 00000000000000000000 A6 005173 B6 000001
X7 201200000000005165 A7 005215 B7 000000

THIS IS REGISTER DUMP NUMBER 2 CALLED FROM LOCATION 004564

X0 777777777777777777A0 A0 000000 B0 000000
X1 55555555555555555555 A1 004312 B1 000000
X2 000000000000000240 A2 004312 B2 000002
X3 00000000007750000000 A3 007576 B3 000240
X4 00000000000005165 A4 00310 B4 000012
X5 55555555555555555555 A5 004574 B5 000052
X6 00000000000000000000 A6 005173 B6 000001
X7 201200000000005165 A7 005215 B7 000000

THIS IS REGISTER DUMP NUMBER 3 CALLED FROM LOCATION 004564

X0 777777777777777777A0 A0 000000 B0 000000
X1 55555555555555555555 A1 004312 B1 000000
X2 000000000000000240 A2 004312 B2 000003
X3 00000000007750000000 A3 007576 B3 000240
X4 00000000000005165 A4 00310 B4 000012
X5 55555555555555555555 A5 004574 B5 000052
X6 00000000000000000000 A6 005173 B6 000001
X7 201200000000005165 A7 005215 B7 000000
```
* QBREGZ
STORAGE ALLOCATION.

** B1 **

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>206</td>
</tr>
<tr>
<td>206</td>
<td></td>
</tr>
</tbody>
</table>

BINARY CONTROL CARDS.
IDENT QBREGZ
END

ENTRY POINTS.
QBREGZ   0+
QBREGZ2  44+
QBSAVZ   141+
REGMDP   0+

EXTERNAL SYMBOLS.
QBREGZ
```
IDENT $08REGZ
ENTRY $08REGZ,$08SAVZ,$08RSTZ
EXT $08PRGZ

* $08REGZ,$08SAVZ,$08RSTZ AND $08PRGZ, A SET OF PROGRAMS TO SAVE AND RES
* C. P. REGISTERS WITHOUT DESTROYING THE CONTENTS OF ANY REGISTER
* MODIFIED TO WORK UNDER SCOPE 3.1 BY STEVE JASIK - CDC
* MODIFIED TO WORK UNDER SCOPE 3.8 BY EDE JACOBY AND DAVID ROSENBERG

ENTRY REGDMP
0 $20000000 + REGDMP JP $**$****
1 $81000000 + RJ $08REGZ
 SA1 $08REGZ .SAVE THE OPERATING (X,A,B) REGISTERS
 LX1 #1 .RETURN ADDRESS TO LOWER 16 BITS
2 $51000000 + SKX $X-1 .X7=ADDRESS CALLED FROM
 S81 $TEMP2 .SAVE CALLING ADDRESS IN CORE

* SET UP ARGUMENTS TO REGDMP
3 $721777776 51$****012 +

4 $51100000 + RJ $08REGZ
 SA1 ARCADD .SET CALLING SEQUENCE FOR $08PRGZ
 X $08REGZ .PRINT THE CONTENTS OF THE REGISTERS
5 $510000141 + RJ $08REGZ .RESTORE THE CONTENTS OF THE OPERATING REGS
6 $00000000 + EQ $08REGZ .RETURN TO CALLING ROUTINE
7 $000000000013 + ARCADD VFD #8/SAVX0
8 $000000000012 + VFD #8/TEMP2
10 $000000000011 +
12 $000000000001 +

11 $000000000001 +

12 $000000000001 +

13 $000000000001 +

14 $000000000001 +

15 $000000000001 +

16 $000000000001 +

17 $000000000001 +

18 $000000000001 +

19 $000000000001 +

20 $000000000001 +

21 $000000000001 +

22 $000000000001 +

23 $000000000001 +

24 $000000000001 +

25 $000000000001 +

26 $000000000001 +

27 $000000000001 +

28 $000000000001 +

29 $000000000001 +

30 $000000000001 +

31 $000000000001 +

32 $000000000001 +

33 $000000000001 +

34 $000000000001 +

35 $000000000001 +

36 $000000000001 +

37 $000000000001 +

38 $000000000001 +

39 $000000000001 +

40 $000000000001 +

41 $000000000001 +

42 $000000000001 +

* routine to save the c. p. registers
Q8REG2

21270 36661 67337
133 12772 54222 28781 28751 55622
134 0630000132 + 0630000132 + 0630000132 +
135 21752 517000042 + 0400000044 +
136 0400000044 +
137 0100000046 +

* Routines to Restore the C. P. Registers

** 85 **

COMPASS 3.6-518. 80/12/17. 23.01.81. PAGE 5

AX2 56 .SHIFT THE SAVED BIT TO POSITION 0 OF X2.
LX6 X6+X1 .ADD 1 TO THE ADDRESS OF THE (XJ *) INST.
SB3 B3+B7 .DECREASE THE ITERATION COUNTER BY 1.
BX7 X7+X2 .OR THIS BIT INTO THE RECONSTRUCTION OF B7.
BX2 A2+B2 .FETCH THE NEXT (XJ *) INSTRUCTION.
LX7 1 .MAKE ROOM FOR THE NEXT BIT OF B7.
PL B3,LOOP .IF WE HAVE NOT YET RESTORED BIT 0 GO LOOP.
LX7 41 .PUT BIT 17 OF B7 IN POSITION 59 OF X7.
SA6 A2+B2 .RESTORE THE (XJ *) INSTRUCTION FOR BIT 0.
AX7 42 .RIGHT ADJUST B7 IN X7 WITH SIGN EXTENSION.
SA7 SAVB7 .SAVE B7 IN MEMORY.
RQ Q8SAVZ

+ Rumbn Rijn RJ17 .THIS IS STORED AT RJ17, NOT EXECUTED HERE.

+ ROUTINE TO RESTORE THE C. P. REGISTERS

VFD 42/68Q8STZ,18/Q8STZ
Q8STZ DATA 0
SA1 SAVB1
SB1 1 .X7 = N
SB7 B1
MX8 18
MX7 B1
MX6 B2
MX5 B3
MX4 18
MX3 X8+X1
MX2 X2+X7
SA2 SAVB1
BX3 X8+X1
BX2 X2+X7
BX1 X2+X3
MX0 18
MX9 18
MX12 B2,SETBS
MX11 W11
MX10 A5+B1
MX9 4
MX8 51
MX7 X4+X6
MX6 X5,W18
MX5 X5,W18
MX4 X4+X6
MX3 X4+X3
MX2 X2+X7
MX1 X2+X3
MX0 X2+X1

SA6 A3
SA5 SAVX5
SA4 A5+B1
SA3 A5+B1
SA2 A5+B1
SA1 A5+B1
SB7 X2+7777777
SA6 SAVA8
SA5 X5+B7 .RESTORE A8
SA4 X5+B7 .RESTORE A8
SA3 X5+B7 .RESTORE A8
SA2 X5+B7 .RESTORE A8
SA1 X5+B7 .RESTORE A8
SA0 A4+B1
SA5 A4+B1
SA4 A4+B1
SA3 A4+B1
SA2 A4+B1
SA1 A4+B1
SA0 A4+B1
SA9 A4+B1
SA8 A4+B1
SA7 A4+B1
SA6 A4+B1
SA5 A4+B1
SA4 A4+B1
SA3 A4+B1
SA2 A4+B1
SA1 A4+B1
SA0 A4+B1

Q8REG3

46000 613700000
201 46000 RSR5 57+0 .RESTORE B5
202 46000 -- (RSR5 NO SB5 B7+0 .RESTORE B5
203 46000 615700000
204 46000 RSR7 NO SB7 B7+0 .RESTORE B7
205 0400000141 + * END OF REGISTER DUMPING PACKAGE

END

464800B CM STORAGE USED 302 STATEMENTS 79 SYMBOLS
MODEL 73 ASSEMBLY 2.067 SECONDS 157 REFERENCES
SYMBOLIC REFERENCE TABLE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREGADD</td>
<td>7</td>
<td>PROGRAM* 2/19 3/23 L</td>
</tr>
<tr>
<td>BIT0</td>
<td>107</td>
<td>PROGRAM* 3/53 3/55 L</td>
</tr>
<tr>
<td>BIT1</td>
<td>105</td>
<td>PROGRAM* 3/58 3/52 L</td>
</tr>
<tr>
<td>BIT10</td>
<td>63</td>
<td>PROGRAM* 3/23 3/25 L</td>
</tr>
<tr>
<td>BIT11</td>
<td>61</td>
<td>PROGRAM* 3/20 3/22 L</td>
</tr>
<tr>
<td>BIT12</td>
<td>57</td>
<td>PROGRAM* 3/17 3/19 L</td>
</tr>
<tr>
<td>BIT13</td>
<td>55</td>
<td>PROGRAM* 3/14 3/16 L</td>
</tr>
<tr>
<td>BIT14</td>
<td>53</td>
<td>PROGRAM* 3/11 3/13 L</td>
</tr>
<tr>
<td>BIT15</td>
<td>51</td>
<td>PROGRAM* 3/10 3/10 L</td>
</tr>
<tr>
<td>BIT16</td>
<td>47</td>
<td>PROGRAM* 3/10 3/10 L</td>
</tr>
<tr>
<td>BIT2</td>
<td>103</td>
<td>PROGRAM* 3/47 3/49 L</td>
</tr>
<tr>
<td>BIT3</td>
<td>101</td>
<td>PROGRAM* 3/44 3/46 L</td>
</tr>
<tr>
<td>BIT4</td>
<td>77</td>
<td>PROGRAM* 3/41 3/43 L</td>
</tr>
<tr>
<td>BIT5</td>
<td>75</td>
<td>PROGRAM* 3/38 3/40 L</td>
</tr>
<tr>
<td>BIT6</td>
<td>73</td>
<td>PROGRAM* 3/35 3/37 L</td>
</tr>
<tr>
<td>BIT7</td>
<td>71</td>
<td>PROGRAM* 3/32 3/34 L</td>
</tr>
<tr>
<td>BIT8</td>
<td>67</td>
<td>PROGRAM* 3/29 3/31 L</td>
</tr>
<tr>
<td>BIT9</td>
<td>65</td>
<td>PROGRAM* 3/26 3/28 L</td>
</tr>
<tr>
<td>END conditioned by loop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOOP</td>
<td>132</td>
<td>PROGRAM* 4/57 L 5/87</td>
</tr>
<tr>
<td>QBFPG3</td>
<td>0</td>
<td>EXTERNAL* 2/83 X 2/20</td>
</tr>
<tr>
<td>QBPG3</td>
<td>0</td>
<td>PROGRAM* 2/82 E 2/12 D 2/14 2/22</td>
</tr>
<tr>
<td>QBHST3</td>
<td>141</td>
<td>PROGRAM* 2/82 E 2/21 5/10 5/19 L 7/15</td>
</tr>
<tr>
<td>QBSAV1</td>
<td>44</td>
<td>PROGRAM* 2/82 E 2/1 J 3/82 J/83 L 5/12</td>
</tr>
<tr>
<td>RGBPM3</td>
<td>0</td>
<td>PROGRAM* 7/18 j 2/11 L 7/15</td>
</tr>
<tr>
<td>RJINS</td>
<td>137</td>
<td>PROGRAM* 4/49 5/14 L</td>
</tr>
<tr>
<td>RJ0</td>
<td>110</td>
<td>PROGRAM* 3/57 L 3/57</td>
</tr>
<tr>
<td>RJ1</td>
<td>186</td>
<td>PROGRAM* 3/54 L 3/54</td>
</tr>
<tr>
<td>RJ10</td>
<td>64</td>
<td>PROGRAM* 3/27 L 3/27</td>
</tr>
<tr>
<td>RJ11</td>
<td>62</td>
<td>PROGRAM* 3/24 L 3/24</td>
</tr>
<tr>
<td>RJ12</td>
<td>60</td>
<td>PROGRAM* 3/21 L 3/21</td>
</tr>
<tr>
<td>RJ13</td>
<td>56</td>
<td>PROGRAM* 3/18 L 3/18</td>
</tr>
<tr>
<td>RJ14</td>
<td>54</td>
<td>PROGRAM* 3/15 L 3/15</td>
</tr>
<tr>
<td>RJ15</td>
<td>52</td>
<td>PROGRAM* 3/12 L 3/12</td>
</tr>
<tr>
<td>RJ16</td>
<td>50</td>
<td>PROGRAM* 3/10 L 3/10</td>
</tr>
<tr>
<td>RJ17</td>
<td>46</td>
<td>PROGRAM* 3/10 L 3/10</td>
</tr>
<tr>
<td>RJ18</td>
<td>45</td>
<td>PROGRAM* 3/86 L 3/86</td>
</tr>
<tr>
<td>RJ2</td>
<td>3/48</td>
<td>PROGRAM 3/48</td>
</tr>
<tr>
<td>RJ3</td>
<td>44</td>
<td>PROGRAM 3/45</td>
</tr>
<tr>
<td>RJ4</td>
<td>42</td>
<td>PROGRAM 3/42</td>
</tr>
<tr>
<td>RJ5</td>
<td>40</td>
<td>PROGRAM 3/40</td>
</tr>
<tr>
<td>RJ6</td>
<td>39</td>
<td>PROGRAM 3/39</td>
</tr>
<tr>
<td>RJ7</td>
<td>36</td>
<td>PROGRAM 3/36</td>
</tr>
<tr>
<td>RJ8</td>
<td>33</td>
<td>PROGRAM 3/33</td>
</tr>
<tr>
<td>RJ9</td>
<td>30</td>
<td>PROGRAM 3/30</td>
</tr>
<tr>
<td>RRSR1</td>
<td>174</td>
<td>PROGRAM* 5/26 6/21 L</td>
</tr>
<tr>
<td>RRSR2</td>
<td>177</td>
<td>PROGRAM* 6/54 L</td>
</tr>
<tr>
<td>RRSR3</td>
<td>280</td>
<td>PROGRAM* 6/57 L</td>
</tr>
<tr>
<td>RRSR4</td>
<td>281</td>
<td>PROGRAM* 7/83 L</td>
</tr>
<tr>
<td>RRSR5</td>
<td>202</td>
<td>PROGRAM* 7/86 L</td>
</tr>
<tr>
<td>RRSR6</td>
<td>203</td>
<td>PROGRAM* 7/89 L</td>
</tr>
<tr>
<td>RRSR7</td>
<td>204</td>
<td>PROGRAM* 7/12 L</td>
</tr>
<tr>
<td>SAV0</td>
<td>23</td>
<td>PROGRAM* 2/40 L 4/37 S 5/50</td>
</tr>
<tr>
<td>SAV1</td>
<td>24</td>
<td>PROGRAM* 2/41 L</td>
</tr>
<tr>
<td>SAV2</td>
<td>25</td>
<td>PROGRAM* 2/42 L</td>
</tr>
<tr>
<td>SAV3</td>
<td>26</td>
<td>PROGRAM* 2/43 L</td>
</tr>
<tr>
<td>SAV4</td>
<td>27</td>
<td>PROGRAM* 2/44 L</td>
</tr>
<tr>
<td>SAV5</td>
<td>30</td>
<td>PROGRAM* 2/45 L 6/37</td>
</tr>
<tr>
<td>SYMBOLIC REFERENCE TABLE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QBREG2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX6 31 PROGRAM* 2/46 L 4/84 S 6/83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX7 32 PROGRAM* 2/47 L 6/87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX8 33 PROGRAM* 2/48 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX9 34 PROGRAM* 2/49 L 5/28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX2 35 PROGRAM* 2/50 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX3 36 PROGRAM* 2/51 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX4 37 PROGRAM* 2/52 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX5 40 PROGRAM* 2/53 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX6 41 PROGRAM* 2/54 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX7 42 PROGRAM* 2/55 L 5/11 S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX8 13 PROGRAM* 2/23 2/32 L 4/25 S 6/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX9 14 PROGRAM* 2/33 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX2 15 PROGRAM* 2/34 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX3 16 PROGRAM* 2/35 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX4 17 PROGRAM* 2/36 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX5 20 PROGRAM* 2/37 L 5/41 6/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX6 21 PROGRAM* 2/38 L 4/85 S 6/21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX7 22 PROGRAM* 2/39 L 4/82 S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVX8 147 PROGRAM* 5/33 L 5/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W18 134 PROGRAM* 5/45 5/47 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W11 173 PROGRAM* 5/40 6/39 L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUBROUTINE QSPRG2 73/74 OPT=1 ** 310 ** FTN 4.8+516 80/12/17. 23.01.00

1 SUBROUTINE QSPRG2(NRGSTRS,LOCN)
 DIMENSION INT(9), RRGSTRS(24)
 DATA NUMBER,INT/1.0,1,2,3,4,5,6,7/
 PRINT 1, NUMBER,LOCN
 5 NUMBER =NUMBER+1
 PRINT 2,(INT(I), RRGSTRS(I), INT(I), RRGSTRS(I+8), INT(I), RRGSTRS(I+16),
 1 I=1,6)
 PRINT 3
 RETURN
 10 FORMAT(///15X,* THIS IS REGISTER DUMP NUMBER *,I3,
 1 * CALLED FROM LOCATION *,06/1H)
 2 FORMAT(11X,1HX,11,3X,020.7X,1RA.II,3X,06.7X,1HB.II,3X,06)
 3 FORMAT(1H)
 END

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS
3 QSPRG2

VARIABLES SN TYPE RELOCATION 183 INT INTEGER ARRAY
 162 I INTEGER F.P. 35 NUMBER INTEGER
 0 LOCN INTEGER F.P. 35 NUMBER INTEGER
 0 RRGSTRS REAL ARRAY F.P.

FILE NAMES MODE
OUTPUT FMT

STATEMENT LABELS
61 1 FMT 72 2 FMT
188 3 FMT

LOOPS LABEL INDEX FROM-TO LENGTH PROPERTIES
14 1 6 6 15B EXT REFS

STATISTICS
PROGRAM LENGTH
520080 CM USED

1170 79
APPENDIX C: MORE ABOUT PASSING PARAMETERS

PROCEDURES WITH A VARIABLE NUMBER OF ARGUMENTS

One of the virtues of the FORTRAN Extended calling sequence is the ease of writing functions with a variable number of arguments. As a simple example of this, we shall present a function that returns the maximum of its integer arguments (this is the same as the MAX1 built-in function). This function may take any number of arguments.

<table>
<thead>
<tr>
<th>IDENT</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>MAX</td>
</tr>
<tr>
<td>MAX</td>
<td>BSS 1</td>
</tr>
<tr>
<td></td>
<td>SA2 X1</td>
</tr>
<tr>
<td></td>
<td>BX6 X2</td>
</tr>
<tr>
<td>MAXLOOP</td>
<td>SA1 A1+1</td>
</tr>
<tr>
<td></td>
<td>ZR X1,MAX</td>
</tr>
<tr>
<td></td>
<td>SA2 X1</td>
</tr>
<tr>
<td></td>
<td>LX3 X6-X2</td>
</tr>
<tr>
<td></td>
<td>PL X3,MAXLOOP</td>
</tr>
<tr>
<td></td>
<td>BX6 X2</td>
</tr>
<tr>
<td></td>
<td>EQ MAXLOOP</td>
</tr>
<tr>
<td></td>
<td>END</td>
</tr>
</tbody>
</table>

\[X6 = \text{FIRST ARGUMENT}\]

A related problem, counting the number of arguments to a function or subroutine, is presented in exercise 17.

RUN COMPILER CALLING SEQUENCE

As we noted in our discussion of parameter transmission (section 3.6), CDC's original FORTRAN compiler, named RUN, used a quite different calling sequence. Instead of passing the addresses of parameters as a list in memory, it placed the addresses of the first (up to) 6 parameters in registers B1 to B6 (if only one parameter, in B1, and so forth). For example, the IDIF function (section 3.9) would have been coded

<table>
<thead>
<tr>
<th>IDENT</th>
<th>IDIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>IDIF</td>
</tr>
<tr>
<td>BSS</td>
<td>1</td>
</tr>
<tr>
<td>SA1</td>
<td>B1 X1=\text{ARGUMENT 1}\</td>
</tr>
<tr>
<td>SA2</td>
<td>B2 X2=\text{ARGUMENT 2}\</td>
</tr>
<tr>
<td>LX6</td>
<td>X1-X2 X6=\text{ARGUMENT 1-ARGUMENT 2}\</td>
</tr>
<tr>
<td>EQ</td>
<td>IDIF RETURN</td>
</tr>
<tr>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C: MORE ABOUT PASSING PARAMETERS

What if a routine has more than six parameters? The addresses of the remaining parameters are stored in memory immediately before the traceback word of the routine being called (note: for RUN, the traceback word must be immediately before the entry line and contain, in the low 18 bits, the argument count of the subprogram). As an example we shall consider ISUM8, a function of 8 integer arguments which returns as its value the sum of these eight numbers. The code for ISUM8 is:

```
IDENT ISUM8
ARG7 BSS 1
ARG8 BSS 1
TRACEBAK VFD 42/7LISUM8,18/8 ENTRY ISUM8
ISUM8 BSS 1
SA1 B1 X1=ARGUMENT 1
SA2 B2 X2=ARGUMENT 2
SA3 B3 X3=ARGUMENT 3
SA4 B4 X4=ARGUMENT 4
IX6 X1+X2 X6=SUM=ARG1+ARG2
IX6 X6+X3 SUM = SUM + ARG3
IX6 X6+X4 SUM = SUM + ARG4
SA1 B5 X1=ARGUMENT 5
SA2 B6 X2=ARGUMENT 6
SA3 ARG7 X3=ADDRESS OF ARGUMENT 7
SA3 X3 X3=ARGUMENT 7
SA4 ARG8 X4=ADDRESS OF ARGUMENT 8
SA4 X4 X4=ARGUMENT 8
IX6 X6+X1 SUM=SUM + ARG5
IX6 X6+X2 SUM=SUM + ARG6
IX6 X6+X3 SUM=SUM + ARG7
IX6 X6+X4 SUM=SUM + ARG8
EQ ISUM8 RETURN END
```

The FORTRAN routine will put the addresses of the seventh and eighth arguments in ARG7 and ARG8 before calling ISUM8. A well-formed traceback word, including the count of the number of arguments, is essential for routines with more than six arguments. The calling routine needs to know the number of arguments the called routine expects, in order to store the addresses of arguments after the sixth in the right place.
APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

CENTRAL PROCESSOR INSTRUCTION TIMINGS

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Unit(2)</th>
<th>6200</th>
<th>6400</th>
<th>6500</th>
<th>6600</th>
<th>171</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>PS</td>
<td>Branch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>RJ</td>
<td>K</td>
<td>24</td>
<td>21</td>
<td>13</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>JP</td>
<td>Bi+K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>ZR</td>
<td>Xj,K</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>NZ</td>
<td>Xj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>PL</td>
<td>Xj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>033</td>
<td>NG</td>
<td>Xj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>034</td>
<td>IR</td>
<td>Xj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>OR</td>
<td>Xj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>DF</td>
<td>Xj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>ID</td>
<td>Xj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>EQ</td>
<td>Bi,Bj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>NE</td>
<td>Bi,Bj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>GE</td>
<td>Bi,Bj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>LT</td>
<td>Bi,Bj,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BXi</td>
<td>Xj</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>BXi</td>
<td>Xj*Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>BXi</td>
<td>Xj+Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>BXi</td>
<td>Xj-Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>BXi</td>
<td>-Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>BXi</td>
<td>-Xk*Xj</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>BXi</td>
<td>-Xk+Xj</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>BXi</td>
<td>-Xk-Xj</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>LXi</td>
<td>jk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>AXi</td>
<td>jk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>LXi</td>
<td>Bj,Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>AXi</td>
<td>Bj,Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NXi</td>
<td>Bj,Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ZXi</td>
<td>Bj,Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>UXi</td>
<td>Bj,Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>PXi</td>
<td>Bj,Xk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The timings are in cycles, with 6200 being the base clock speed. The timings for 6500 and 6600 are typically twice the base clock speed. The number 171 refers to the total instruction cycle time for most instructions, including the time to fetch and execute the instruction.
APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

INSTRUCTION TIMINGS

<table>
<thead>
<tr>
<th>173</th>
<th>172</th>
<th>174</th>
<th>175</th>
<th>720</th>
<th>730</th>
<th>750</th>
<th>760</th>
<th>Notes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>29</td>
<td>28</td>
<td>36</td>
<td>25</td>
<td>28</td>
<td>20</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>29</td>
<td>22</td>
<td>26</td>
<td>29</td>
<td>22</td>
<td>26</td>
<td>18</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>29</td>
<td>22</td>
<td>26</td>
<td>29</td>
<td>20</td>
<td>26</td>
<td>18</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3)</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>3</td>
<td>13</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>3</td>
<td>13</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>239</td>
</tr>
</tbody>
</table>
APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Unit(2)</th>
<th>6200</th>
<th>6400</th>
<th>6500</th>
<th>6600</th>
<th>171</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>FXi Xj+Xk Add</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>FXi Xj-Xk</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>DXi Xj+Xk</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>DXi Xj-Xk</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>RXi Xj+Xk</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>RXi Xj-Xk</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>IXi Xj+Xk Long Add</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>IXi Xj-Xk</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>FXi Xj*Xk Multiply</td>
<td>60</td>
<td>57</td>
<td>10</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>RXi Xj*Xk</td>
<td>60</td>
<td>57</td>
<td>10</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>DXi Xj*Xk</td>
<td>60</td>
<td>57</td>
<td>10</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>MXi jk Shift</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>FXi Xj/Xk Divide</td>
<td>60</td>
<td>57</td>
<td>29</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>RXi Xj/Xk Divide</td>
<td>60</td>
<td>57</td>
<td>29</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>NO</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>IM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>466</td>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>467</td>
<td>CU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>CXi Xk Divide</td>
<td>71</td>
<td>68</td>
<td>8</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>SAi A[j+K Increment</td>
<td>i=0:</td>
<td>9</td>
<td>6</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>SAi B[j+K</td>
<td>i=1-5:</td>
<td>15</td>
<td>12</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>SAi X[j+K</td>
<td>i=6-7:</td>
<td>13</td>
<td>10</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>SAi A[j+Bk</td>
<td>i=0:</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>SAi B[j+Bk</td>
<td>i=1-5:</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>SAi A[j-Bk</td>
<td>i=6-7:</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>SAi B[j-Bk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>SBi A[j+K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>SBi B[j+K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>SBi X[j+K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>SBi X[j+Bk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>SBi A[j+Bk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>SBi A[j-Bk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>SBi B[j+Bk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>SBi B[j-Bk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

240
APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

<table>
<thead>
<tr>
<th></th>
<th>172</th>
<th>174</th>
<th>175</th>
<th>720</th>
<th>730</th>
<th>750</th>
<th>760</th>
<th>Notes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>64</td>
<td>58</td>
<td>5</td>
<td>63</td>
<td>57</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>64</td>
<td>58</td>
<td>5</td>
<td>63</td>
<td>57</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>64</td>
<td>58</td>
<td>5</td>
<td>63</td>
<td>57</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>64</td>
<td>58</td>
<td>20</td>
<td>63</td>
<td>57</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>64</td>
<td>58</td>
<td>20</td>
<td>63</td>
<td>57</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>73</td>
<td>67</td>
<td>2</td>
<td>73</td>
<td>67</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	12	5	2	12	5	2	2		59
28	21	23	25	18	23	15	(5)		59
17	10	2	15	8	2	2			59

	11	5	2	11	4	2	2		61
11	5	2	11	4	2	2			61
11	5	2	11	4	2	2			61
11	5	2	11	4	2	2			61
11	5	2	11	4	2	2			61
11	5	2	11	4	2	2			61
11	5	2	11	4	2	2			61
11	5	2	11	4	2	2			61
APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Unit(2)</th>
<th>6200</th>
<th>6500</th>
<th>6600</th>
<th>171</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>SXI Aj+K</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>SXI Bj+K</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>SXI Xj+K</td>
<td>"</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>73</td>
<td>SXI Xj+Bk</td>
<td>"</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>74</td>
<td>SXI Aj+Bk</td>
<td>"</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>75</td>
<td>SXI Aj-Bk</td>
<td>"</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>76</td>
<td>SXI Bj+Bk</td>
<td>"</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>77</td>
<td>SXI Bj-Bk</td>
<td>"</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>19</td>
</tr>
</tbody>
</table>

1. All instruction times are given in minor cycles (also called clock periods), which are

- 100 ns for 6000 and Cyber 70 series
- 50 ns for models 171-174, 720, and 730
- 25 ns for models 175, 750, and 760

2. Functional unit designations are for the 6600 and Cyber 70 model 74. In addition to units specified above,

- For opcode 02: address calculation done in increment unit
- For opcodes 03x: tests done in long add unit
- For opcodes 04-07: tests done in increment unit

Functional unit relationships for models 175, 750, and 760 are the same except:

- Opcodes 24 and 25: normalize unit
- Opcodes 26 and 27: Boolean unit
- Opcode 47: population count unit

3. Branch timings for 6600 and Cyber 70 model 74:

<table>
<thead>
<tr>
<th>Branch Condition</th>
<th>Unit</th>
<th>Opcode 03x</th>
<th>Opcode 04-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch in stack, branch taken</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Branch in stack, branch not taken</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Branch out of stack, branch taken</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Branch out of stack, branch not taken</td>
<td>14</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

For models 175, 750, and 760, if the branch is taken and the instruction branched to is in the instruction stack, 3 cycles are required.
APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

<table>
<thead>
<tr>
<th></th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>174</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

4. Instructions available only on models 72, 73, 171 (optional), 172, 173, 174, 720, and 730. The timing formulas for these instructions are quite complex; refer to the hardware manual for your specific machine.

5. On the 6600 and model 74, data is available in the X register 8 cycles after the instruction begins.
INDEX

A register, 5, 33-34
 set instructions for, 59-60
Absolute assembly, 163
Absolute value function, 97
Access time, memory, 2, 179
Add unit, 178
 instructions, 68-72
Addition;
 in binary, 15-16
 in binary-coded-decimal, 16
 double precision floating point, 69-71
 floating point, 68-70
 integer, 66-67
 in octal, 25
 round floating point, 69-72
Address, 4
 field, 47
Address expression, 133, 165-166
ADIM function, 73
ALGOL, 129
"And" operation, 63-64
Argument, see parameter
Arith error, 88-89, 91
ASCENT, 46
ASCENTF, 46
Assembler, 45-46
 see also COMPASS
Attribute
 of a symbol, 146

B register, 5, 33-34
 branches, 43-45
 set instructions for, 61
Biased exponent, 30
Binary coded decimal, 14-15
Binary number system, 14
Bit, 13
Blank:
 in instruction, 48
 in macro parameter, 158
Boolean instructions, 62-65
 Boolean unit, 178
Branch instructions, 37-45
 execution time, 179, 182
BSS pseudo-instruction, 50
CALL statement, 52-53
Catenation, 138
Catenation mark, 138
Central memory, 2, 11, 33
Central processor, 9, 33
Character set, 95
 Character manipulation, 93-100, 112-123
Chippewa Operating System, 46
COBOL, 129
Code duplication, 152-154
Coefficient (of floating point number), 30
Collating sequence, 119-121
Comment Card, 49
Comments field, 47, 49
COMMON statement, 164
Common relocatable symbol, 164
Compare collated, 120-123
Compare and Move Unit, 12, 112-123
Compare instructions, 116-123
Compare uncollated, 116-18
COMPASS, 46, 125-166
Concatenation, see catenation
Conditional assembly, 134
Conversion algorithms:
 binary to decimal, 27, 107-111
 binary to octal, 24
 decimal to binary, 28
 decimal to octal, 28
 octal to binary, 24
 octal to decimal, 25, 27
Core:
 ferrite, 2, 13
 memory, 2

244
storage, 3
see also central memory,
extended core storage
Count one's instruction, 100-
101
Cyber 70 and 170 series, features
special to, 12, 112

Data channel, 6-7
DATA pseudo-instruction,
86, 142, 145
Debugging, 140-149, 167-175
Definition, symbol, 39, 47
133, 165-166
Delimiter:
in IFG instruction,
157
in MICRO instruction, 154
Direct move instruction,
113-114
Display code, 93-95
Divide unit, 179
instructions, 84-85, 101
Division:
in binary, 22
floating point, 84
integer, 101, 106
round floating point,
85
Double precision floating
point:
addition and subtraction,
68-72
multiplication, 76-77,
105, 107
DUP pseudo-instruction,
153
Dump, octal core, 141, 171-173
ENDM pseudo-instruction,
127
ENTRY pseudo-instruction, 51
Entry line, 51
Entry point, 51
Exchange package, 172
"Exclusive or" operation,
64
Exponent (of floating point
number), 30
Expression
see address expression
EXT, 51
Extended core storage, 10
External symbol, 51-52, 163
Field, 47
Field length, 59, 172
Floating point:
numbers, representation
of, 30
addition and subtraction,
68-77
multiplication, 76-77
division, 84-85
Forcing upper, 49, 146
FORTRAN, 1, 29, 35, 46, 129,
149
see also FORTRAN Extended
RUN FORTRAN, and
specific FORTRAN
statements
FORTRAN Extended compiler,
53
Function, 53-54
Functional unit, 177-178
GO TO statement, 45
computed, 39
Hexadecimal, 24
Higher-level language, 129, 184
INDEX

I register
 see instruction stack
IDENT pseudo-instruction, 50
IDIM function, 67
IF pseudo-instruction
 134, 157
IF statement 42
 vs. IF pseudo-instructions
 134
IFC pseudo-instruction, 157
IFEQ pseudo-instruction, 134
IFGE pseudo-instruction
 134
IFGT pseudo-instruction
 134
IFLE pseudo-instruction, 134
IFLT pseudo-instruction, 134
IFNE pseudo-instruction, 134
Increment unit, 54, 178
 instructions, 54-62
Indefinite, 88
 tests for, 89-90
Index register, 5
Indirect move instruction,
 115
Infinity, 88
 tests for, 89
Input-output, 6-9
Instruction location
 counter, 35
Instruction overlap, 3, 177-179
Instruction stack, 180-182
Integer
 addition and subtraction, 66
 66
 multiplication and
 division, 101-107
Interrupt, 7
IRP pseudo-instruction, 161

Jump, unconditional, 38
 and instruction stack, 181-182

Left shift instruction, 96
 nominal, 99
LIST pseudo-instruction,
 M option, 131
 A option, 139
Listing, 168-170
Literal, 91, 143
Load, 2, 5, 33, 59, 179
Load map, 170-171
Loader, 163
Location, 4
 field, 47
LOCF function, 58-59
Logical:
 difference, 64
 product, 63-64
 sum, 63-64
Long add unit, 178
 instructions, 66
Look-ahead, 3

Machine independence, 129
Macro, 125-132
 MACRO pseudo-instruction,
 127-129
Map, see load map
Mask instruction, 98
MATMU (matrix multiply)
 subroutine, 78-83
Memory,
 see central memory,
 extended core storage,
MICRO pseudo-instruction,
 154-155
MIP, 132
Mixed-mode, 132
 macros for, 132-140
Monitor, 9, 10
Monitor exchange jump, 10
Move descriptor, 115
Move instruction, 113-116
Multiplication
 in binary, 16-17
 in binary-coded decimal, 17

246
INDEX

double precision floating point, 76-7, 105-107
floating point, 76-77
integer, 1, 12, 101-107
in octal, 25
round floating point, 77
Multiply unit, 178
instructions, 76-77
Multiprocessor, 9

No operation instruction, 48
Normalize instruction, 72
Normalization, 32, 68, 86
"Not" operation, 64

Octal, 24
One's complement, 19
Opcode, 36
field, 47
Operation code
see opcode
Optimization, 177-184
"Or" operation, 63-64
Overflow:
integer, 21
floating point, 88

Pack instruction, 102-3
Parameter
subroutine, 52
macro, 128-129, 138, 158
Pass, assembler, 166
Pass instruction, 48
Peripheral processor, 8-9
Pipelined functional unit, 182
PL/I 130
Program relocatable symbol, 163
Program stop instruction, 38
Pseudo-instruction
see pseudo-operation
Pseudo-operation, 50, 125
Random access, 2
REGDUMP, 173-174, B1-B10
Register, 3-4
see also A register, B register, X register
Relocatable assembly, 163
Relocatable symbol, 163
Return jump, 39-40
and instruction stack, 182
Right shift instruction, 96
nominal, 99
Round and normalize instruction, 72-73
Round floating point:
addition and subtraction, 70-71
division, 84-5
multiplication, 77
RUN FORTRAN compiler, 53, C1-C2

Scoreboard, 177
Set instructions, 54-62
SET pseudo-instruction, 133, 166
Shift instructions, 96-9
Shift unit, 178
instructions, 72, 96-103
Sign and magnitude representation, 22
Sign bit, 21
Sign extension, 21
in set-X instructions, 55-56
in right-shift instructions, 96
SIPROS, 46
Special character, 93
SQR function, 85-87, 90-92
Stack:
see instruction stack
STOPDUP pseudo-instruction, 153
Store, 2, 5, 33, 59
Store, 141-144
INDEX

Stored program computer, 1
Subtraction
 in binary, 17-19
 double precision floating point, 68-71
 floating point, 68-71
 integer, 66
 in octal, 25
 round floating point, 68-72
Symbol, 47, 150
 value of, 162-166

TRACE function, 74-75
Traceback, 144-148
Transmit instruction, 63-64
Two's complement, 19

Unpack instruction, 103
USE pseudo-instruction, 164

VFD pseudo-instruction, 145

Word, 4, 8, 33

X register, 4, 33
 branches, 40-42, 89-90
 set instructions for, 55-58